These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 9645669)

  • 21. Chemical-specific health consultation for chromated copper arsenate chemical mixture: port of Djibouti.
    Chou S; Colman J; Tylenda C; De Rosa C
    Toxicol Ind Health; 2007 May; 23(4):183-208. PubMed ID: 18429380
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimating Children's Soil/Dust Ingestion Rates through Retrospective Analyses of Blood Lead Biomonitoring from the Bunker Hill Superfund Site in Idaho.
    von Lindern I; Spalinger S; Stifelman ML; Stanek LW; Bartrem C
    Environ Health Perspect; 2016 Sep; 124(9):1462-70. PubMed ID: 26745545
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Significance of contaminated food in collective dose after a severe reactor accident.
    Partanen JP; Savolainen I
    Health Phys; 1986 Feb; 50(2):209-16. PubMed ID: 3753960
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation and ranking of restoration strategies for radioactively contaminated sites.
    Zeevaert T; Bousher A; Brendler V; Jensen PH; Nordlinder S
    J Environ Radioact; 2001; 56(1-2):33-50. PubMed ID: 11446122
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Establishing Radiological Screening Levels for Defense-related Uranium Mine (DRUM) Sites on BLM Land Using a Recreational Future-use Scenario.
    Brown SH; Edge R; Elmer J; McDonald M
    Health Phys; 2018 Jun; 114(6):588-601. PubMed ID: 29697511
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cleanup protocol for 226Ra-contaminated cobbly soil at UMTRA Project sites.
    Gonzales DE; Millard JB; Miller ML; Metzler D
    Health Phys; 1994 Jan; 66(1):80-4. PubMed ID: 8253582
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ambient environmental profile for the Savannah River Site.
    Rollins EM
    Health Phys; 2008 Jul; 95(1):55-68. PubMed ID: 18545030
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimation of annual effective dose from indoor radon/thoron concentrations and measurement of radon concentrations in soil.
    Mehra R; Bala P
    Radiat Prot Dosimetry; 2014 Jan; 158(1):111-4. PubMed ID: 23901137
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Forecast of collective radiation dose decrease of the population of Belarus as the result of optimization of moveable potassium contents in soils contaminated by 137Cs].
    Putiatin IuV; Adianova OB
    Radiats Biol Radioecol; 2010; 50(6):723-31. PubMed ID: 21434399
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ReCLAIM v2.0: a spreadsheet tool for calculating doses and soil/water radionuclide screening levels for assessment of radioactively contaminated land.
    Willans SM; Galais NC; Lennon CP; Trivedi DP
    J Radiol Prot; 2007 Mar; 27(1):87-93. PubMed ID: 17341807
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Measurements of radon concentrations in waters and soil gas of Zonguldak, Turkey.
    Koray A; Akkaya G; Kahraman A; Kaynak G
    Radiat Prot Dosimetry; 2014 Dec; 162(3):375-81. PubMed ID: 24287600
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reference biospheres for post-closure performance assessment: inter-comparison of SHETRAN simulations and BIOMASS results.
    Birkinshaw SJ; Thorne MC; Younger PL
    J Radiol Prot; 2005 Mar; 25(1):33-49. PubMed ID: 15798277
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Radiation doses for Marshall Islands Atolls affected by U.S. nuclear testing: all exposure pathways, remedial measures, and environmental loss of (137)Cs.
    Robison WL; Hamilton TF
    Health Phys; 2010 Jan; 98(1):1-11. PubMed ID: 19959945
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of Remediation Parameters on in-Air Ambient Dose Equivalent Rates When Remediating Open Sites with Radiocesium-contaminated Soil.
    Malins A; Kurikami H; Kitamura A; Machida M
    Health Phys; 2016 Oct; 111(4):357-66. PubMed ID: 27575348
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bases for secondary standards for residual radionuclides in soil and some recommendations for cost-effective operational implementation.
    Anspaugh LR; Daniels JI
    Health Phys; 1996 May; 70(5):722-34. PubMed ID: 8690586
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Work to save dose: contrasting effective dose rates from radon exposure in workplaces and residences against the backdrop of public and occupational regulatory limits.
    Whicker JJ; McNaughton MW
    Health Phys; 2009 Sep; 97(3):248-56. PubMed ID: 19667808
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparison of minimum detectable and proposed maximum allowable soil concentration cleanup levels for selected radionuclides.
    Wood JL; Benke RR; Rohrer SM; Kearfott KJ
    Health Phys; 1999 Apr; 76(4):413-7. PubMed ID: 10086603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modelling the dispersion of radionuclides in dust from a landform covered by low uranium grade waste rock.
    Doering C; McMaster SA; Johansen MP
    J Environ Radioact; 2019 Jun; 202():51-58. PubMed ID: 30797160
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biotic transport of radionuclides from a low-level radioactive waste site.
    Kennedy WE; Cadwell LL; McKenzie DH
    Health Phys; 1985 Jul; 49(1):11-24. PubMed ID: 4008258
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Screening houses for vapor intrusion risks: a multiple regression analysis approach.
    Johnston JE; Gibson JM
    Environ Sci Technol; 2013 Jun; 47(11):5595-602. PubMed ID: 23659435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.