BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 9645940)

  • 41. Activation and nuclear translocation of ERK1/2 by the formyl peptide receptor is regulated by G protein and is not dependent on beta-arrestin translocation or receptor endocytosis.
    Gripentrog JM; Miettinen HM
    Cell Signal; 2005 Oct; 17(10):1300-11. PubMed ID: 16038804
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inhibitory effects of spinorphin, a novel endogenous regulator, on chemotaxis, O2- generation, and exocytosis by N-formylmethionyl-leucyl-phenylalanine (FMLP)-stimulated neutrophils.
    Yamamoto Y; Kanazawa T; Shimamura M; Ueki M; Hazato T
    Biochem Pharmacol; 1997 Sep; 54(6):695-701. PubMed ID: 9310346
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The synthetic peptide Trp-Lys-Tyr-Met-Val-D-Met is a potent chemotactic agonist for mouse formyl peptide receptor.
    He R; Tan L; Browning DD; Wang JM; Ye RD
    J Immunol; 2000 Oct; 165(8):4598-605. PubMed ID: 11035102
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The ligand binding site of the formyl peptide receptor maps in the transmembrane region.
    Miettinen HM; Mills JS; Gripentrog JM; Dratz EA; Granger BL; Jesaitis AJ
    J Immunol; 1997 Oct; 159(8):4045-54. PubMed ID: 9378994
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rebamipide suppresses formyl-methionyl-leucyl-phenylalanine (fMLP)-induced superoxide production by inhibiting fMLP-receptor binding in human neutrophils.
    Nagano C; Azuma A; Ishiyama H; Sekiguchi K; Imagawa K; Kikuchi M
    J Pharmacol Exp Ther; 2001 Apr; 297(1):388-94. PubMed ID: 11259567
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dexras1/AGS-1 inhibits signal transduction from the Gi-coupled formyl peptide receptor to Erk-1/2 MAP kinases.
    Graham TE; Prossnitz ER; Dorin RI
    J Biol Chem; 2002 Mar; 277(13):10876-82. PubMed ID: 11751935
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Signal transduction in human alveolar macrophages: diminished chemotactic response to FMLP correlates with a diminished density of Gi proteins and FMLP receptors.
    Beaty CD; Martin TR; Wilson CB
    Am J Respir Cell Mol Biol; 1991 Jul; 5(1):87-92. PubMed ID: 1908689
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bacterial lipopolysaccharide selectively up-regulates the function of the chemotactic peptide receptor formyl peptide receptor 2 in murine microglial cells.
    Cui YH; Le Y; Gong W; Proost P; Van Damme J; Murphy WJ; Wang JM
    J Immunol; 2002 Jan; 168(1):434-42. PubMed ID: 11751990
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Functional activation of the formyl peptide receptor by a new endogenous ligand in human lung A549 cells.
    Rescher U; Danielczyk A; Markoff A; Gerke V
    J Immunol; 2002 Aug; 169(3):1500-4. PubMed ID: 12133977
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Activation of G-protein coupled fMLP or PAF receptor directly triggers glucose transporter type 1 (GLUT1) translocation in Chinese hamster ovary (CHO) cells stably expressing fMLP or PAF receptor.
    Hagi A; Hayashi H; Kishi K; Wang L; Ebina Y
    J Med Invest; 2000 Feb; 47(1-2):19-28. PubMed ID: 10740976
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biology of chemokine and classical chemoattractant receptors: differential requirements for adhesion-triggering versus chemotactic responses in lymphoid cells.
    Campbell JJ; Qin S; Bacon KB; Mackay CR; Butcher EC
    J Cell Biol; 1996 Jul; 134(1):255-66. PubMed ID: 8698820
    [TBL] [Abstract][Full Text] [Related]  

  • 52. β-Arrestin 1-dependent regulation of Rap2 is required for fMLP-stimulated chemotaxis in neutrophil-like HL-60 cells.
    Gera N; Swanson KD; Jin T
    J Leukoc Biol; 2017 Jan; 101(1):239-251. PubMed ID: 27493245
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Priming induces functional coupling of N-formyl-methionyl-leucyl-phenylalanine receptors in equine neutrophils.
    Brazil TJ; Rossi AG; Haslett C; McGorum B; Dixon PM; Chilvers ER
    J Leukoc Biol; 1998 Mar; 63(3):380-8. PubMed ID: 9500527
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In vivo and in vitro assessment of porcine neutrophil activation responses to chemoattractants: flow cytometric evidence for the selective absence of formyl peptide receptors.
    Fletcher MP; Stahl GL; Longhurst JC
    J Leukoc Biol; 1990 Apr; 47(4):355-65. PubMed ID: 2108228
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Formyl peptide receptors are coupled to multiple mitogen-activated protein kinase cascades by distinct signal transduction pathways: role in activation of reduced nicotinamide adenine dinucleotide oxidase.
    Rane MJ; Carrithers SL; Arthur JM; Klein JB; McLeish KR
    J Immunol; 1997 Nov; 159(10):5070-8. PubMed ID: 9366435
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lipoxin A4 receptor activation is distinct from that of the formyl peptide receptor in myeloid cells: inhibition of CD11/18 expression by lipoxin A4-lipoxin A4 receptor interaction.
    Fiore S; Serhan CN
    Biochemistry; 1995 Dec; 34(51):16678-86. PubMed ID: 8527441
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Membrane lipid microdomains differentially regulate intracellular signaling events in human neutrophils.
    Tuluc F; Meshki J; Kunapuli SP
    Int Immunopharmacol; 2003 Dec; 3(13-14):1775-90. PubMed ID: 14636828
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Differential coupling of the formyl peptide receptor to adenylate cyclase and phospholipase C by the pertussis toxin-insensitive Gz protein.
    Tsu RC; Lai HW; Allen RA; Wong YH
    Biochem J; 1995 Jul; 309 ( Pt 1)(Pt 1):331-9. PubMed ID: 7619076
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stimulation of type II adenylyl cyclase by chemoattractant formyl peptide and C5a receptors.
    Tsu RC; Allen RA; Wong YH
    Mol Pharmacol; 1995 Apr; 47(4):835-41. PubMed ID: 7723745
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Priming of human neutrophils with N-formyl-methionyl-leucyl-phenylalanine by a calcium-independent, pertussis toxin-insensitive pathway.
    Karnad AB; Hartshorn KL; Wright J; Myers JB; Schwartz JH; Tauber AI
    Blood; 1989 Nov; 74(7):2519-26. PubMed ID: 2553166
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.