BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 9645957)

  • 1. Granule cell development in the cerebellum is punctuated by changes in Sox gene expression.
    Rex M; Church R; Tointon K; Ichihashi RM; Mokhtar S; Uwanogho D; Sharpe PT; Scotting PJ
    Brain Res Mol Brain Res; 1998 Mar; 55(1):28-34. PubMed ID: 9645957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Onset of Tlx-3 expression in the chick cerebellar cortex correlates with the morphological development of fissures and delineates a posterior transverse boundary.
    Logan C; Millar C; Bharadia V; Rouleau K
    J Comp Neurol; 2002 Jun; 448(2):138-49. PubMed ID: 12012426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The external granule layer of the developing chick cerebellum generates granule cells and cells of the isthmus and rostral hindbrain.
    Lin JC; Cai L; Cepko CL
    J Neurosci; 2001 Jan; 21(1):159-68. PubMed ID: 11150332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitotic granule cell precursors undergo highly dynamic morphological transitions throughout the external germinal layer of the chick cerebellum.
    Hanzel M; Rook V; Wingate RJT
    Sci Rep; 2019 Oct; 9(1):15218. PubMed ID: 31645601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microarchitectural changes during development of the cerebellar cortex.
    Mecha M; Peña-Melián AL; Blanco MJ
    Int J Dev Biol; 2010; 54(4):691-8. PubMed ID: 20209441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Derivation of cerebellar Golgi neurons from the external granular layer: evidence from explantation of external granule cells in vivo.
    Hausmann B; Mangold U; Sievers J; Berry M
    J Comp Neurol; 1985 Feb; 232(4):511-22. PubMed ID: 3920289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nav2 hypomorphic mutant mice are ataxic and exhibit abnormalities in cerebellar development.
    McNeill EM; Klöckner-Bormann M; Roesler EC; Talton LE; Moechars D; Clagett-Dame M
    Dev Biol; 2011 May; 353(2):331-43. PubMed ID: 21419114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absence of an external germinal layer in zebrafish and shark reveals a distinct, anamniote ground plan of cerebellum development.
    Chaplin N; Tendeng C; Wingate RJ
    J Neurosci; 2010 Feb; 30(8):3048-57. PubMed ID: 20181601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Embryonic expression of the chicken Sox2, Sox3 and Sox11 genes suggests an interactive role in neuronal development.
    Uwanogho D; Rex M; Cartwright EJ; Pearl G; Healy C; Scotting PJ; Sharpe PT
    Mech Dev; 1995 Jan; 49(1-2):23-36. PubMed ID: 7748786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression and regulation of the LIM-class homeobox gene rlim-1 in neuronal progenitors of the rat cerebellum.
    Hayes WP; Yangco N; Chin H; Mill JF; Pu LP; Taira M; Dawid IB; Gallo V
    J Neurosci Res; 2001 Feb; 63(3):237-51. PubMed ID: 11170173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. p75NTR prevents the onset of cerebellar granule cell migration via RhoA activation.
    Zanin JP; Friedman WJ
    Elife; 2022 Aug; 11():. PubMed ID: 36040414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide synthase expression reveals compartments of cerebellar granule cells and suggests a role for mossy fibers in their development.
    Schilling K; Schmidt HH; Baader SL
    Neuroscience; 1994 Apr; 59(4):893-903. PubMed ID: 7520135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of the helix-loop-helix genes Id-1 and NSCL-1 during cerebellar development.
    Duncan MK; Bordas L; Dicicco-Bloom E; Chada KK
    Dev Dyn; 1997 Jan; 208(1):107-14. PubMed ID: 8989525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transit amplification in the amniote cerebellum evolved via a heterochronic shift in NeuroD1 expression.
    Butts T; Hanzel M; Wingate RJ
    Development; 2014 Jul; 141(14):2791-5. PubMed ID: 25005474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitotic events in cerebellar granule progenitor cells that expand cerebellar surface area are critical for normal cerebellar cortical lamination in mice.
    Chang JC; Leung M; Gokozan HN; Gygli PE; Catacutan FP; Czeisler C; Otero JJ
    J Neuropathol Exp Neurol; 2015 Mar; 74(3):261-72. PubMed ID: 25668568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of galanin receptor-1 (GalR1) expression in external granule cell layer of post-natal mouse cerebellum.
    Jungnickel SR; Yao M; Shen PJ; Gundlach AL
    J Neurochem; 2005 Mar; 92(6):1452-62. PubMed ID: 15748163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mode and tempo of tangential cell migration in the cerebellar external granular layer.
    Komuro H; Yacubova E; Yacubova E; Rakic P
    J Neurosci; 2001 Jan; 21(2):527-40. PubMed ID: 11160432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of cerebellar granule cell development in the Pax6 mutant, Sey mouse.
    Swanson DJ; Tong Y; Goldowitz D
    Brain Res Dev Brain Res; 2005 Dec; 160(2):176-93. PubMed ID: 16289327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ex Vivo Culture of Chick Cerebellar Slices and Spatially Targeted Electroporation of Granule Cell Precursors.
    Hanzel M; Wingate RJ; Butts T
    J Vis Exp; 2015 Dec; (106):e53421. PubMed ID: 26709704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of TAG-1 and synaptophysin in the developing cerebellar cortex: relationship to Purkinje cell dendritic development.
    Stottmann RW; Rivas RJ
    J Comp Neurol; 1998 May; 395(1):121-35. PubMed ID: 9590550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.