These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Evaluation of large intracranial aneurysm with three-dimensional MRI. Kurihara N; Takahashi S; Higano S; Matsumoto K; Yanagawa I; Takahashi A; Sakamoto K J Comput Assist Tomogr; 1995; 19(5):707-12. PubMed ID: 7560314 [TBL] [Abstract][Full Text] [Related]
3. Hepatocellular carcinoma in North America: a multiinstitutional study of appearance on T1-weighted, T2-weighted, and serial gadolinium-enhanced gradient-echo images. Kelekis NL; Semelka RC; Worawattanakul S; de Lange EE; Ascher SM; Ahn IO; Reinhold C; Remer EM; Brown JJ; Bis KG; Woosley JT; Mitchell DG AJR Am J Roentgenol; 1998 Apr; 170(4):1005-13. PubMed ID: 9530051 [TBL] [Abstract][Full Text] [Related]
4. A diagnostic pitfall for intracranial aneurysms in time-of-flight MR angiography: small intracranial lipomas. Kemmling A; Noelte I; Gerigk L; Singer S; Groden C; Scharf J AJR Am J Roentgenol; 2008 Jan; 190(1):W62-7. PubMed ID: 18094274 [TBL] [Abstract][Full Text] [Related]
5. Follow-up of intracranial aneurysms treated with detachable coils: comparison of gadolinium-enhanced 3D time-of-flight MR angiography and digital subtraction angiography. Boulin A; Pierot L Radiology; 2001 Apr; 219(1):108-13. PubMed ID: 11274544 [TBL] [Abstract][Full Text] [Related]
6. [Intracranial aneurysms. A comparison between magnetic resonance tomography and arteriography]. Lanfermann H; Gross-Fengels W; Steinbrich W Rofo; 1992 Aug; 157(2):118-23. PubMed ID: 1515618 [TBL] [Abstract][Full Text] [Related]
8. Accurate diagnosis of small cerebral aneurysms ≤5 mm in diameter with 3.0-T MR angiography. Li MH; Li YD; Gu BX; Cheng YS; Wang W; Tan HQ; Chen YC Radiology; 2014 May; 271(2):553-60. PubMed ID: 24495263 [TBL] [Abstract][Full Text] [Related]
9. Relationship between contrast enhancement on fluid-attenuated inversion recovery MR sequences and signal intensity on T2-weighted MR images: visual evaluation of brain tumors. Kubota T; Yamada K; Kizu O; Hirota T; Ito H; Ishihara K; Nishimura T J Magn Reson Imaging; 2005 Jun; 21(6):694-700. PubMed ID: 15906343 [TBL] [Abstract][Full Text] [Related]
10. 3-T contrast-enhanced MR angiography in evaluation of suspected intracranial aneurysm: comparison with MDCT angiography. Nael K; Villablanca JP; Mossaz L; Pope W; Juncosa A; Laub G; Finn JP AJR Am J Roentgenol; 2008 Feb; 190(2):389-95. PubMed ID: 18212224 [TBL] [Abstract][Full Text] [Related]
11. Assessment of brain aneurysms by using high-resolution magnetic resonance angiography after endovascular coil delivery. Wong JH; Mitha AP; Willson M; Hudon ME; Sevick RJ; Frayne R J Neurosurg; 2007 Aug; 107(2):283-9. PubMed ID: 17695381 [TBL] [Abstract][Full Text] [Related]
15. Limitations of magnetic resonance imaging and magnetic resonance angiography in the diagnosis of intracranial aneurysms. Schwab KE; Gailloud P; Wyse G; Tamargo RJ Neurosurgery; 2008 Jul; 63(1):29-34; discussion 34-5. PubMed ID: 18728566 [TBL] [Abstract][Full Text] [Related]
16. Characteristic CT and MRI findings of intracranial chondroma. Duan F; Qiu S; Jiang J; Chang J; Liu Z; Lv X; Feng X; Xiong W; An J; Chen J; Yang W; Wen C Acta Radiol; 2012 Dec; 53(10):1146-54. PubMed ID: 22983260 [TBL] [Abstract][Full Text] [Related]
17. Science to practice: can an enzyme-sensitive MR contrast agent be used to image inflammation in aneurysms? Mahmood U Radiology; 2009 Sep; 252(3):627-8. PubMed ID: 19717746 [TBL] [Abstract][Full Text] [Related]
18. Comparative study of 3D-SPGR vs 2D-SE T1WI after enhancement in the brain. Zhu W; Qi J; Wang C J Huazhong Univ Sci Technolog Med Sci; 2003; 23(2):180-3. PubMed ID: 12973944 [TBL] [Abstract][Full Text] [Related]