BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

552 related articles for article (PubMed ID: 9646865)

  • 1. The structure and mechanism of protein phosphatases: insights into catalysis and regulation.
    Barford D; Das AK; Egloff MP
    Annu Rev Biophys Biomol Struct; 1998; 27():133-64. PubMed ID: 9646865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein phosphatases.
    Barford D
    Curr Opin Struct Biol; 1995 Dec; 5(6):728-34. PubMed ID: 8749359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein phosphatases: structures and implications.
    Jia Z
    Biochem Cell Biol; 1997; 75(1):17-26. PubMed ID: 9192069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant protein phosphatases: What do we know about their mechanism of action?
    Bheri M; Mahiwal S; Sanyal SK; Pandey GK
    FEBS J; 2021 Feb; 288(3):756-785. PubMed ID: 32542989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the catalytic mechanism of PPM Ser/Thr phosphatases from the atomic resolution structures of a mycobacterial enzyme.
    Bellinzoni M; Wehenkel A; Shepard W; Alzari PM
    Structure; 2007 Jul; 15(7):863-72. PubMed ID: 17637345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of protein phosphatases in plants and animals.
    Moorhead GB; De Wever V; Templeton G; Kerk D
    Biochem J; 2009 Jan; 417(2):401-9. PubMed ID: 19099538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of human dual specificity phosphatase, JNK stimulatory phosphatase-1, at 1.5 A resolution.
    Yokota T; Nara Y; Kashima A; Matsubara K; Misawa S; Kato R; Sugio S
    Proteins; 2007 Feb; 66(2):272-8. PubMed ID: 17068812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of human protein tyrosine phosphatase 1B.
    Barford D; Flint AJ; Tonks NK
    Science; 1994 Mar; 263(5152):1397-404. PubMed ID: 8128219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An alternate conformation and a third metal in PstP/Ppp, the M. tuberculosis PP2C-Family Ser/Thr protein phosphatase.
    Pullen KE; Ng HL; Sung PY; Good MC; Smith SM; Alber T
    Structure; 2004 Nov; 12(11):1947-54. PubMed ID: 15530359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The extended human PTPome: a growing tyrosine phosphatase family.
    Alonso A; Pulido R
    FEBS J; 2016 Apr; 283(8):1404-29. PubMed ID: 26573778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical models of catalytic domains of protein phosphatases 1 and 2A with Zn2+ and Mn2+ metal dications and putative bioligands in their catalytic centers.
    Woźniak-Celmer E; Ołdziej S; Ciarkowski J
    Acta Biochim Pol; 2001; 48(1):35-52. PubMed ID: 11440182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation.
    Denu JM; Tanner KG
    Biochemistry; 1998 Apr; 37(16):5633-42. PubMed ID: 9548949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A common structural scaffold in CTD phosphatases that supports distinct catalytic mechanisms.
    Pons T; Paramonov I; Boullosa C; Ibáñez K; Rojas AM; Valencia A
    Proteins; 2014 Jan; 82(1):103-18. PubMed ID: 23900790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model of Cdc25 phosphatase catalytic domain and Cdk-interaction surface based on the presence of a rhodanese homology domain.
    Hofmann K; Bucher P; Kajava AV
    J Mol Biol; 1998 Sep; 282(1):195-208. PubMed ID: 9733650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of human TMDP, a testis-specific dual specificity protein phosphatase: implications for substrate specificity.
    Kim SJ; Jeong DG; Yoon TS; Son JH; Cho SK; Ryu SE; Kim JH
    Proteins; 2007 Jan; 66(1):239-45. PubMed ID: 17044055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanisms of the protein serine/threonine phosphatases.
    Barford D
    Trends Biochem Sci; 1996 Nov; 21(11):407-12. PubMed ID: 8987393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of an essential acidic residue in Cdc25 protein phosphatase and a general three-dimensional model for a core region in protein phosphatases.
    Eckstein JW; Beer-Romero P; Berdo I
    Protein Sci; 1996 Jan; 5(1):5-12. PubMed ID: 8771191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional characterization of the low-molecular-mass phosphotyrosine-protein phosphatase of Acinetobacter johnsonii.
    Grangeasse C; Doublet P; Vincent C; Vaganay E; Riberty M; Duclos B; Cozzone AJ
    J Mol Biol; 1998 May; 278(2):339-47. PubMed ID: 9571056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural analysis of the PP2C phosphatase tPphA from Thermosynechococcus elongatus: a flexible flap subdomain controls access to the catalytic site.
    Schlicker C; Fokina O; Kloft N; Grüne T; Becker S; Sheldrick GM; Forchhammer K
    J Mol Biol; 2008 Feb; 376(2):570-81. PubMed ID: 18164312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A targeted library of small-molecule, tyrosine, and dual-specificity phosphatase inhibitors derived from a rational core design and random side chain variation.
    Rice RL; Rusnak JM; Yokokawa F; Yokokawa S; Messner DJ; Boynton AL; Wipf P; Lazo JS
    Biochemistry; 1997 Dec; 36(50):15965-74. PubMed ID: 9398331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.