These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 9647749)
1. Peroxide reductase activity of NADH dehydrogenase of an alkaliphilic Bacillus in the presence of a 22-kDa protein component from Amphibacillus xylanus. Koyama N; Koitabashi T; Niimura Y; Massey V Biochem Biophys Res Commun; 1998 Jun; 247(3):659-62. PubMed ID: 9647749 [TBL] [Abstract][Full Text] [Related]
2. Peroxide reductase activity of NADH dehydrogenase in the presence of an endogenous 20-kDa component of an alkaliphilic Bacillus. Koitabashi T; Satoh T; Koyama N Curr Microbiol; 2000 Dec; 41(6):388-91. PubMed ID: 11080386 [TBL] [Abstract][Full Text] [Related]
3. Amphibacillus xylanus NADH oxidase and Salmonella typhimurium alkyl-hydroperoxide reductase flavoprotein components show extremely high scavenging activity for both alkyl hydroperoxide and hydrogen peroxide in the presence of S. typhimurium alkyl-hydroperoxide reductase 22-kDa protein component. Niimura Y; Poole LB; Massey V J Biol Chem; 1995 Oct; 270(43):25645-50. PubMed ID: 7592740 [TBL] [Abstract][Full Text] [Related]
4. A hydrogen peroxide-forming NADH oxidase that functions as an alkyl hydroperoxide reductase in Amphibacillus xylanus. Niimura Y; Nishiyama Y; Saito D; Tsuji H; Hidaka M; Miyaji T; Watanabe T; Massey V J Bacteriol; 2000 Sep; 182(18):5046-51. PubMed ID: 10960086 [TBL] [Abstract][Full Text] [Related]
5. Hydrogen peroxide-forming NADH oxidase belonging to the peroxiredoxin oxidoreductase family: existence and physiological role in bacteria. Nishiyama Y; Massey V; Takeda K; Kawasaki S; Sato J; Watanabe T; Niimura Y J Bacteriol; 2001 Apr; 183(8):2431-8. PubMed ID: 11274101 [TBL] [Abstract][Full Text] [Related]
6. A flavoprotein functional as NADH oxidase from Amphibacillus xylanus Ep01: purification and characterization of the enzyme and structural analysis of its gene. Niimura Y; Ohnishi K; Yarita Y; Hidaka M; Masaki H; Uchimura T; Suzuki H; Kozaki M; Uozumi T J Bacteriol; 1993 Dec; 175(24):7945-50. PubMed ID: 8253683 [TBL] [Abstract][Full Text] [Related]
8. Characterization of an NADH-linked cupric reductase activity from the Escherichia coli respiratory chain. Rapisarda VA; Montelongo LR; FarÃas RN; Massa EM Arch Biochem Biophys; 1999 Oct; 370(2):143-50. PubMed ID: 10510271 [TBL] [Abstract][Full Text] [Related]
9. The NADH oxidase-Prx system in Amphibacillus xylanus. Niimura Y Subcell Biochem; 2007; 44():195-205. PubMed ID: 18084894 [TBL] [Abstract][Full Text] [Related]
10. Involvement of Lys-308 in the FAD-dependent oxidase activity of NADH dehydrogenase from an alkaliphilic Bacillus. Kitazume Y; Mutoh M; Shiraki M; Koyama N Res Microbiol; 2006 Dec; 157(10):956-9. PubMed ID: 17097855 [TBL] [Abstract][Full Text] [Related]
11. Production of a recombinant hybrid hemoflavoprotein: engineering a functional NADH:cytochrome c reductase. Barber MJ; Quinn GB Protein Expr Purif; 2001 Nov; 23(2):348-58. PubMed ID: 11676611 [TBL] [Abstract][Full Text] [Related]
12. Role of cysteine 337 and cysteine 340 in flavoprotein that functions as NADH oxidase from Amphibacillus xylanus studied by site-directed mutagenesis. Ohnishi K; Niimura Y; Hidaka M; Masaki H; Suzuki H; Uozumi T; Nishino T J Biol Chem; 1995 Mar; 270(11):5812-7. PubMed ID: 7726998 [TBL] [Abstract][Full Text] [Related]
13. Unusually stable NAD-specific glutamate dehydrogenase from the alkaliphile Amphibacillus xylanus. Jahns T Antonie Van Leeuwenhoek; 1996 Jul; 70(1):89-95. PubMed ID: 8836445 [TBL] [Abstract][Full Text] [Related]
14. Stimulation of peroxidase activity by decamerization related to ionic strength: AhpC protein from Amphibacillus xylanus. Kitano K; Niimura Y; Nishiyama Y; Miki K J Biochem; 1999 Aug; 126(2):313-9. PubMed ID: 10423523 [TBL] [Abstract][Full Text] [Related]
15. Purification and analysis of a flavoprotein functional as NADH oxidase from Amphibacillus xylanus overexpressed in Escherichia coli. Ohnishi K; Niimura Y; Yokoyama K; Hidaka M; Masaki H; Uchimura T; Suzuki H; Uozumi T; Kozaki M; Komagata K; Nishino T J Biol Chem; 1994 Dec; 269(50):31418-23. PubMed ID: 7989308 [TBL] [Abstract][Full Text] [Related]
16. Involvement of glycine and aspartate residues in the binding capacity of FAD in the NADH dehydrogenase from an alkaliphilic Bacillus. Shiraki M; Koyama N Curr Microbiol; 2003 Jun; 46(6):432-4. PubMed ID: 12732950 [TBL] [Abstract][Full Text] [Related]
17. Purification and characterization of an NADH oxidase from extremely thermophilic anaerobic bacterium Thermotoga hypogea. Yang X; Ma K Arch Microbiol; 2005 Aug; 183(5):331-7. PubMed ID: 15912375 [TBL] [Abstract][Full Text] [Related]
18. Anthracycline antibiotic-stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase. Doroshow JH Cancer Res; 1983 Oct; 43(10):4543-51. PubMed ID: 6309369 [TBL] [Abstract][Full Text] [Related]
19. NADH oxidase and alkyl hydroperoxide reductase subunit C (peroxiredoxin) from Amphibacillus xylanus form an oligomeric assembly. Arai T; Kimata S; Mochizuki D; Hara K; Zako T; Odaka M; Yohda M; Arisaka F; Kanamaru S; Matsumoto T; Yajima S; Sato J; Kawasaki S; Niimura Y FEBS Open Bio; 2015; 5():124-31. PubMed ID: 25737838 [TBL] [Abstract][Full Text] [Related]
20. Intracellular free flavin and its associated enzymes participate in oxygen and iron metabolism in Kimata S; Mochizuki D; Satoh J; Kitano K; Kanesaki Y; Takeda K; Abe A; Kawasaki S; Niimura Y FEBS Open Bio; 2018 Jun; 8(6):947-961. PubMed ID: 29928575 [No Abstract] [Full Text] [Related] [Next] [New Search]