These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 9647822)
1. Quantification of Gordona amarae strains in foaming activated sludge and anaerobic digester systems with oligonucleotide hybridization probes. de los Reyes MF; de los Reyes FL; Hernandez M; Raskin L Appl Environ Microbiol; 1998 Jul; 64(7):2503-12. PubMed ID: 9647822 [TBL] [Abstract][Full Text] [Related]
2. Group-specific small-subunit rRNA hybridization probes to characterize filamentous foaming in activated sludge systems. de los Reyes FL; Ritter W; Raskin L Appl Environ Microbiol; 1997 Mar; 63(3):1107-17. PubMed ID: 9055425 [TBL] [Abstract][Full Text] [Related]
3. A phylogeny of the genus Nocardia deduced from the analysis of small-subunit ribosomal DNA sequences, including transfer of Nocardia amarae to the genus Gordona as Gordona amarae comb. nov. Ruimy R; Boiron P; Boivin V; Christen R FEMS Microbiol Lett; 1994 Nov; 123(3):261-7. PubMed ID: 7545965 [TBL] [Abstract][Full Text] [Related]
4. Transfer of Nocardia amarae Lechevalier and Lechevalier 1974 to the genus Gordona as Gordona amarae comb. nov. Goodfellow M; Chun J; Stubbs S; Tobili AS Lett Appl Microbiol; 1994 Dec; 19(6):401-5. PubMed ID: 7765703 [TBL] [Abstract][Full Text] [Related]
5. Dispelling the "Nocardia amarae" myth: a phylogenetic and phenotypic study of mycolic acid-containing actinomycetes isolated from activated sludge foam. Stainsby FM; Soddel J; Seviour R; Upton J; Goodfellow M Water Sci Technol; 2002; 46(1-2):81-90. PubMed ID: 12216692 [TBL] [Abstract][Full Text] [Related]
6. Quantitative use of fluorescent in situ hybridization to examine relationships between mycolic acid-containing actinomycetes and foaming in activated sludge plants. Davenport RJ; Curtis TP; Goodfellow M; Stainsby FM; Bingley M Appl Environ Microbiol; 2000 Mar; 66(3):1158-66. PubMed ID: 10698786 [TBL] [Abstract][Full Text] [Related]
7. Transfer of Rhodococcus aichiensis Tsukamura 1982 and Nocardia amarae Lechevalier and Lechevalier 1974 to the genus Gordona as Gordona aichiensis comb. nov. and Gordona amarae comb. nov. Klatte S; Rainey FA; Kroppenstedt RM Int J Syst Bacteriol; 1994 Oct; 44(4):769-73. PubMed ID: 7981103 [TBL] [Abstract][Full Text] [Related]
8. Production of anti-Gordonia amarae mycolic acid polyclonal antibody for detection of mycolic acid-containing bacteria in activated sludge foam. Iwahori K; Miyata N; Takata N; Morisada S; Mochizuki T J Biosci Bioeng; 2001; 92(5):417-22. PubMed ID: 16233121 [TBL] [Abstract][Full Text] [Related]
9. Microthrix parvicella and Gordona amarae in mesophilic and thermophilic anaerobic digestion systems. Marneri M; Mamais D; Koutsiouki E Environ Technol; 2009 Apr; 30(5):437-44. PubMed ID: 19507434 [TBL] [Abstract][Full Text] [Related]
10. Role of filamentous microorganisms in activated sludge foaming: relationship of mycolata levels to foaming initiation and stability. de los Reyes FL; Raskin L Water Res; 2002 Jan; 36(2):445-59. PubMed ID: 11827351 [TBL] [Abstract][Full Text] [Related]
11. Improving qPCR methodology for detection of foaming bacteria by analysis of broad-spectrum primers and a highly specific probe for quantification of Nocardia spp. in activated sludge. Asvapathanagul P; Olson BH J Appl Microbiol; 2017 Jan; 122(1):97-105. PubMed ID: 27699950 [TBL] [Abstract][Full Text] [Related]
12. Microbial community structures in foaming and nonfoaming full-scale wastewater treatment plants. de los Reyes FL; Rothauszky D; Raskin L Water Environ Res; 2002; 74(5):437-49. PubMed ID: 12469948 [TBL] [Abstract][Full Text] [Related]
13. Substrate uptake by Gordonia amarae in activated sludge foams by FISH-MAR. Carr EL; Eales KL; Seviour RJ Water Sci Technol; 2006; 54(1):39-45. PubMed ID: 16898135 [TBL] [Abstract][Full Text] [Related]
14. Rapid quantification and analysis of genetic diversity among Gordonia populations in foaming activated sludge plants. Marrengane Z; Kumar SK; Pillay L; Bux F J Basic Microbiol; 2011 Aug; 51(4):415-23. PubMed ID: 21656794 [TBL] [Abstract][Full Text] [Related]
15. Nocardia takedensis sp. nov., isolated from moat sediment and scumming activated sludge. Yamamura H; Hayakawa M; Nakagawa Y; Tamura T; Kohno T; Komatsu F; Iimura Y Int J Syst Evol Microbiol; 2005 Jan; 55(Pt 1):433-436. PubMed ID: 15653914 [TBL] [Abstract][Full Text] [Related]
17. A full-scale study of mixing and foaming in egg-shaped anaerobic digesters. Subramanian B; Miot A; Jones B; Klibert C; Pagilla KR Bioresour Technol; 2015 Sep; 192():461-70. PubMed ID: 26080103 [TBL] [Abstract][Full Text] [Related]
18. Quantifying filamentous microorganisms in activated sludge before, during, and after an incident of foaming by oligonucleotide probe hybridizations and antibody staining. Oerther DB; de los Reyes FL; de los Reyes MF; Raskin L Water Res; 2001 Oct; 35(14):3325-36. PubMed ID: 11547853 [TBL] [Abstract][Full Text] [Related]
19. Rapid detection of Nocardia amarae in the activated sludge process using enzyme-linked immunosorbent assay (ELISA). Iwahori K; Miyata N; Morisada S; Suzuki N J Biosci Bioeng; 2000; 89(5):469-73. PubMed ID: 16232779 [TBL] [Abstract][Full Text] [Related]
20. The opportunistic pathogen Nocardia farcinica is a foam-producing bacterium in activated sludge plants. Stratton HM; Seviour RJ; Soddell JA; Blackall LL; Muir D Lett Appl Microbiol; 1996 May; 22(5):342-6. PubMed ID: 8672272 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]