These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 9647823)
21. Catabolite repression of the operon for xylose utilization from Bacillus subtilis W23 is mediated at the level of transcription and depends on a cis site in the xylA reading frame. Jacob S; Allmansberger R; Gärtner D; Hillen W Mol Gen Genet; 1991 Oct; 229(2):189-96. PubMed ID: 1921970 [TBL] [Abstract][Full Text] [Related]
22. Dissolution of xylose metabolism in Lactococcus lactis. Erlandson KA; Park JH; Wissam ; El Khal ; Kao HH; Basaran P; Brydges S; Batt CA Appl Environ Microbiol; 2000 Sep; 66(9):3974-80. PubMed ID: 10966417 [TBL] [Abstract][Full Text] [Related]
23. Organization of the XYL genes in a thermophilic Bacillus species. Liao WX; Earnest L; Kok SL; Jeyaseelan K Biochem Mol Biol Int; 1996 Aug; 39(5):1049-62. PubMed ID: 8866023 [TBL] [Abstract][Full Text] [Related]
24. Regulation of the operon responsible for broad-spectrum mercury resistance in Streptomyces lividans 1326. Brünker P; Rother D; Sedlmeier R; Klein J; Mattes R; Altenbuchner J Mol Gen Genet; 1996 Jun; 251(3):307-15. PubMed ID: 8676873 [TBL] [Abstract][Full Text] [Related]
25. Organization and characterization of three genes involved in D-xylose catabolism in Lactobacillus pentosus. Lokman BC; van Santen P; Verdoes JC; Krüse J; Leer RJ; Posno M; Pouwels PH Mol Gen Genet; 1991 Nov; 230(1-2):161-9. PubMed ID: 1660563 [TBL] [Abstract][Full Text] [Related]
26. The D-xylose-binding protein, XylF, from Thermoanaerobacter ethanolicus 39E: cloning, molecular analysis, and expression of the structural gene. Erbeznik M; Strobel HJ; Dawson KA; Jones CR J Bacteriol; 1998 Jul; 180(14):3570-7. PubMed ID: 9657999 [TBL] [Abstract][Full Text] [Related]
27. Molecular genetics of a receptor protein for D-xylose, encoded by the gene xylF, in Escherichia coli. Sumiya M; Davis EO; Packman LC; McDonald TP; Henderson PJ Recept Channels; 1995; 3(2):117-28. PubMed ID: 8581399 [TBL] [Abstract][Full Text] [Related]
28. Regulators of the Bacillus subtilis cydABCD operon: identification of a negative regulator, CcpA, and a positive regulator, ResD. Puri-Taneja A; Schau M; Chen Y; Hulett FM J Bacteriol; 2007 May; 189(9):3348-58. PubMed ID: 17322317 [TBL] [Abstract][Full Text] [Related]
29. A Flexible Binding Site Architecture Provides New Insights into CcpA Global Regulation in Gram-Positive Bacteria. Yang Y; Zhang L; Huang H; Yang C; Yang S; Gu Y; Jiang W mBio; 2017 Jan; 8(1):. PubMed ID: 28119470 [TBL] [Abstract][Full Text] [Related]
30. MalI, a novel protein involved in regulation of the maltose system of Escherichia coli, is highly homologous to the repressor proteins GalR, CytR, and LacI. Reidl J; Römisch K; Ehrmann M; Boos W J Bacteriol; 1989 Sep; 171(9):4888-99. PubMed ID: 2670898 [TBL] [Abstract][Full Text] [Related]
31. Molecular cloning of regulatory gene xylR and operator-promoter regions of the xylABC and xylDEGF operons of the TOL plasmid. Inouye S; Nakazawa A; Nakazawa T J Bacteriol; 1983 Sep; 155(3):1192-9. PubMed ID: 6885718 [TBL] [Abstract][Full Text] [Related]
32. Cloning and characterization of the catabolite control protein A gene from Bacillus stearothermophilus No. 236. Choi ID; Ha GS; Kim KN; Choi YJ Biosci Biotechnol Biochem; 2004 Jul; 68(7):1414-23. PubMed ID: 15277745 [TBL] [Abstract][Full Text] [Related]
33. Transcriptional analysis of the xylose ABC transport operons in the thermophilic anaerobe Thermoanaerobacter ethanolicus. Jones CR; Ray M; Strobel HJ Curr Microbiol; 2002 Jul; 45(1):54-62. PubMed ID: 12029528 [TBL] [Abstract][Full Text] [Related]
34. Regulation of D-xylose metabolism in Caulobacter crescentus by a LacI-type repressor. Stephens C; Christen B; Watanabe K; Fuchs T; Jenal U J Bacteriol; 2007 Dec; 189(24):8828-34. PubMed ID: 17933895 [TBL] [Abstract][Full Text] [Related]
35. The groESL operon of the halophilic lactic acid bacterium Tetragenococcus halophila. Fukuda D; Watanabe M; Aso Y; Sonomoto K; Ishizaki A Biosci Biotechnol Biochem; 2002 May; 66(5):1176-80. PubMed ID: 12092841 [TBL] [Abstract][Full Text] [Related]
36. Homologous metalloregulatory proteins from both gram-positive and gram-negative bacteria control transcription of mercury resistance operons. Helmann JD; Wang Y; Mahler I; Walsh CT J Bacteriol; 1989 Jan; 171(1):222-9. PubMed ID: 2492496 [TBL] [Abstract][Full Text] [Related]
37. The putative regulator of catechol catabolism in Rhodococcus opacus 1CP--an IclR-type, not a LysR-type transcriptional regulator. Eulberg D; Schlömann M Antonie Van Leeuwenhoek; 1998; 74(1-3):71-82. PubMed ID: 10068790 [TBL] [Abstract][Full Text] [Related]
38. Fructose utilization in Lactococcus lactis as a model for low-GC gram-positive bacteria: its regulator, signal, and DNA-binding site. Barrière C; Veiga-da-Cunha M; Pons N; Guédon E; van Hijum SA; Kok J; Kuipers OP; Ehrlich DS; Renault P J Bacteriol; 2005 Jun; 187(11):3752-61. PubMed ID: 15901699 [TBL] [Abstract][Full Text] [Related]
39. A promoter-screening plasmid and xylose-inducible, glucose-repressible expression vectors for Staphylococcus carnosus. Wieland KP; Wieland B; Götz F Gene; 1995 May; 158(1):91-6. PubMed ID: 7789818 [TBL] [Abstract][Full Text] [Related]
40. Molecular analysis of mxbD and mxbM, a putative sensor-regulator pair required for oxidation of methanol in Methylobacterium extorquens AM1. Springer AL; Morris CJ; Lidstrom ME Microbiology (Reading); 1997 May; 143 ( Pt 5)():1737-1744. PubMed ID: 9168623 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]