These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 9647836)

  • 1. phnE and glpT genes enhance utilization of organophosphates in Escherichia coli K-12.
    Elashvili I; Defrank JJ; Culotta VC
    Appl Environ Microbiol; 1998 Jul; 64(7):2601-8. PubMed ID: 9647836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible phase variation in the phnE gene, which is required for phosphonate metabolism in Escherichia coli K-12.
    Iqbal S; Parker G; Davidson H; Moslehi-Rahmani E; Robson RL
    J Bacteriol; 2004 Sep; 186(18):6118-23. PubMed ID: 15342581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of the cryptic PhnE permease promotes rapid adaptive evolution in a population of Escherichia coli K-12 starved for phosphate.
    Guillemet ML; Moreau PL
    J Bacteriol; 2012 Jan; 194(2):253-60. PubMed ID: 22056928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphate uptake by the phosphonate transport system PhnCDE.
    Stasi R; Neves HI; Spira B
    BMC Microbiol; 2019 Apr; 19(1):79. PubMed ID: 30991951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the glpT-encoded sn-glycerol-3-phosphate permease of Escherichia coli, an oligomeric integral membrane protein.
    Larson TJ; Schumacher G; Boos W
    J Bacteriol; 1982 Dec; 152(3):1008-21. PubMed ID: 6754693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid evolution of acetic acid-detoxifying Escherichia coli under phosphate starvation conditions requires activation of the cryptic PhnE permease and induction of translesion synthesis DNA polymerases.
    Moreau PL
    FEMS Microbiol Lett; 2017 Feb; 364(4):. PubMed ID: 28199639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Action at a distance for glp repressor control of glpTQ transcription in Escherichia coli K-12.
    Yang B; Gerhardt SG; Larson TJ
    Mol Microbiol; 1997 May; 24(3):511-21. PubMed ID: 9179845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycerol-3-phosphate transport in Haemophilus influenzae: cloning, sequencing, and transcription analysis of the glpT gene.
    Song XM; Forsgren A; Janson H
    Gene; 1998 Jul; 215(2):381-8. PubMed ID: 9714837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elevated Expression of GlpT and UhpT via FNR Activation Contributes to Increased Fosfomycin Susceptibility in Escherichia coli under Anaerobic Conditions.
    Kurabayashi K; Tanimoto K; Fueki S; Tomita H; Hirakawa H
    Antimicrob Agents Chemother; 2015 Oct; 59(10):6352-60. PubMed ID: 26248376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcription of glpT of Escherichia coli K12 is regulated by anaerobiosis and fnr.
    Wong KK; Kwan HS
    FEMS Microbiol Lett; 1992 Jul; 73(1-2):15-8. PubMed ID: 1521763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Only one gene is required for the glpT-dependent transport of sn-glycerol-3-phosphate in Escherichia coli.
    Ludtke D; Larson TJ; Beck C; Boos W
    Mol Gen Genet; 1982; 186(4):540-7. PubMed ID: 6752662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. sn-Glycerol-3-phosphate transport in Salmonella typhimurium.
    Hengge R; Larson TJ; Boos W
    J Bacteriol; 1983 Jul; 155(1):186-95. PubMed ID: 6408060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The roles of the polytopic membrane proteins NarK, NarU and NirC in Escherichia coli K-12: two nitrate and three nitrite transporters.
    Clegg S; Yu F; Griffiths L; Cole JA
    Mol Microbiol; 2002 Apr; 44(1):143-55. PubMed ID: 11967075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular insights into fosfomycin resistance in Escherichia coli.
    Ballestero-Téllez M; Docobo-Pérez F; Portillo-Calderón I; Rodríguez-Martínez JM; Racero L; Ramos-Guelfo MS; Blázquez J; Rodríguez-Baño J; Pascual A
    J Antimicrob Chemother; 2017 May; 72(5):1303-1309. PubMed ID: 28093485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of glpT and glpD mutations on expression of the phoA gene in Escherichia coli.
    Rao NN; Roberts MF; Torriani A; Yashphe J
    J Bacteriol; 1993 Jan; 175(1):74-9. PubMed ID: 8416912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A second transport system for sn-glycerol-3-phosphate in Escherichia coli.
    Argast M; Ludtke D; Silhavy TJ; Boos W
    J Bacteriol; 1978 Dec; 136(3):1070-83. PubMed ID: 363686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Periplasmic protein related to the sn-glycerol-3-phosphate transport system of Escherichia coli.
    Silhavy TJ; Hartig-Beecken I; Boos W
    J Bacteriol; 1976 May; 126(2):951-8. PubMed ID: 770459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. sn-Glycerol-3-phosphate transport in Escherichia coli and Salmonella typhimurium.
    Larson T; Ludtke D; Hengge R; Boos W
    Tokai J Exp Clin Med; 1982; 7 Suppl():149-55. PubMed ID: 6764562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Divergent transcription of the sn-glycerol-3-phosphate active transport (glpT) and anaerobic sn-glycerol-3-phosphate dehydrogenase (glpA glpC glpB) genes of Escherichia coli K-12.
    Ehrmann M; Boos W; Ormseth E; Schweizer H; Larson TJ
    J Bacteriol; 1987 Feb; 169(2):526-32. PubMed ID: 3027032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular analysis of the cryptic and functional phn operons for phosphonate use in Escherichia coli K-12.
    Makino K; Kim SK; Shinagawa H; Amemura M; Nakata A
    J Bacteriol; 1991 Apr; 173(8):2665-72. PubMed ID: 1840580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.