These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 9647847)
1. Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway. Shimada H; Kondo K; Fraser PD; Miura Y; Saito T; Misawa N Appl Environ Microbiol; 1998 Jul; 64(7):2676-80. PubMed ID: 9647847 [TBL] [Abstract][Full Text] [Related]
2. Production of lycopene by the food yeast, Candida utilis that does not naturally synthesize carotenoid. Miura Y; Kondo K; Shimada H; Saito T; Nakamura K; Misawa N Biotechnol Bioeng; 1998 Apr 20-May 5; 58(2-3):306-8. PubMed ID: 10191407 [TBL] [Abstract][Full Text] [Related]
3. Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeasts. Misawa N; Shimada H J Biotechnol; 1997 Jan; 59(3):169-81. PubMed ID: 9519479 [TBL] [Abstract][Full Text] [Related]
4. Production of the carotenoids lycopene, beta-carotene, and astaxanthin in the food yeast Candida utilis. Miura Y; Kondo K; Saito T; Shimada H; Fraser PD; Misawa N Appl Environ Microbiol; 1998 Apr; 64(4):1226-9. PubMed ID: 9546156 [TBL] [Abstract][Full Text] [Related]
5. Amplification of HMG-CoA reductase production enhances carotenoid accumulation in Neurospora crassa. Wang GY; Keasling JD Metab Eng; 2002 Jul; 4(3):193-201. PubMed ID: 12616689 [TBL] [Abstract][Full Text] [Related]
7. The regulation of activity of main mevalonic acid pathway enzymes: farnesyl diphosphate synthase, 3-hydroxy-3-methylglutaryl-CoA reductase, and squalene synthase in yeast Saccharomyces cerevisiae. Szkopińska A; Swiezewska E; Karst F Biochem Biophys Res Commun; 2000 Jan; 267(1):473-7. PubMed ID: 10623644 [TBL] [Abstract][Full Text] [Related]
8. Efficient production of lycopene in Saccharomyces cerevisiae by enzyme engineering and increasing membrane flexibility and NAPDH production. Hong J; Park SH; Kim S; Kim SW; Hahn JS Appl Microbiol Biotechnol; 2019 Jan; 103(1):211-223. PubMed ID: 30343427 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of β-carotene production by over-expression of HMG-CoA reductase coupled with addition of ergosterol biosynthesis inhibitors in recombinant Saccharomyces cerevisiae. Yan GL; Wen KR; Duan CQ Curr Microbiol; 2012 Feb; 64(2):159-63. PubMed ID: 22086347 [TBL] [Abstract][Full Text] [Related]
10. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering. Chen Y; Xiao W; Wang Y; Liu H; Li X; Yuan Y Microb Cell Fact; 2016 Jun; 15(1):113. PubMed ID: 27329233 [TBL] [Abstract][Full Text] [Related]
11. Engineering the lycopene synthetic pathway in E. coli by comparison of the carotenoid genes of Pantoea agglomerans and Pantoea ananatis. Yoon SH; Kim JE; Lee SH; Park HM; Choi MS; Kim JY; Lee SH; Shin YC; Keasling JD; Kim SW Appl Microbiol Biotechnol; 2007 Feb; 74(1):131-9. PubMed ID: 17115209 [TBL] [Abstract][Full Text] [Related]
12. Production of lycopene in the non-carotenoid-producing yeast Yarrowia lipolytica. Matthäus F; Ketelhot M; Gatter M; Barth G Appl Environ Microbiol; 2014 Mar; 80(5):1660-9. PubMed ID: 24375130 [TBL] [Abstract][Full Text] [Related]
13. Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Xie W; Lv X; Ye L; Zhou P; Yu H Metab Eng; 2015 Jul; 30():69-78. PubMed ID: 25959020 [TBL] [Abstract][Full Text] [Related]
14. Multi-modular metabolic engineering and efflux engineering for enhanced lycopene production in recombinant Saccharomyces cerevisiae. Huang G; Li J; Lin J; Duan C; Yan G J Ind Microbiol Biotechnol; 2024 Jan; 51():. PubMed ID: 38621758 [TBL] [Abstract][Full Text] [Related]
15. Construction of carotenoid biosynthetic pathways using squalene synthase. Furubayashi M; Li L; Katabami A; Saito K; Umeno D FEBS Lett; 2014 Jan; 588(3):436-42. PubMed ID: 24333579 [TBL] [Abstract][Full Text] [Related]
16. Construction of new Pichia pastoris X-33 strains for production of lycopene and β-carotene. Araya-Garay JM; Feijoo-Siota L; Rosa-dos-Santos F; Veiga-Crespo P; Villa TG Appl Microbiol Biotechnol; 2012 Mar; 93(6):2483-92. PubMed ID: 22159890 [TBL] [Abstract][Full Text] [Related]
17. Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene α-santalene in a fed-batch mode. Scalcinati G; Knuf C; Partow S; Chen Y; Maury J; Schalk M; Daviet L; Nielsen J; Siewers V Metab Eng; 2012 Mar; 14(2):91-103. PubMed ID: 22330799 [TBL] [Abstract][Full Text] [Related]
18. Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase. Matthews PD; Wurtzel ET Appl Microbiol Biotechnol; 2000 Apr; 53(4):396-400. PubMed ID: 10803894 [TBL] [Abstract][Full Text] [Related]
19. Effect of squalene synthase inhibition on the expression of hepatic cholesterol biosynthetic enzymes, LDL receptor, and cholesterol 7 alpha hydroxylase. Ness GC; Zhao Z; Keller RK Arch Biochem Biophys; 1994 Jun; 311(2):277-85. PubMed ID: 7911291 [TBL] [Abstract][Full Text] [Related]
20. Transcription of the three HMG-CoA reductase genes of Mucor circinelloides. Nagy G; Farkas A; Csernetics Á; Bencsik O; Szekeres A; Nyilasi I; Vágvölgyi C; Papp T BMC Microbiol; 2014 Apr; 14():93. PubMed ID: 24731286 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]