BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 9648207)

  • 1. Contributions of solvent-solvent hydrogen bonding and van der Waals interactions to the attraction between methane molecules in water.
    Rank JA; Baker D
    Biophys Chem; 1998 Apr; 71(2-3):199-204. PubMed ID: 9648207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissecting hydrophobic hydration and association.
    Remsing RC; Weeks JD
    J Phys Chem B; 2013 Dec; 117(49):15479-91. PubMed ID: 23944226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solvation thermodynamics of water in nonpolar organic solvents indicate the occurrence of nontraditional hydrogen bonds.
    Graziano G
    J Phys Chem B; 2005 Jan; 109(2):981-5. PubMed ID: 16866469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of attractive methane-water interactions in the potential of mean force between methane molecules in water.
    Asthagiri D; Merchant S; Pratt LR
    J Chem Phys; 2008 Jun; 128(24):244512. PubMed ID: 18601353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of salt or cosolvent addition on solubility of a hydrophobic solute in water: Relevance to those on thermal stability of a protein.
    Murakami S; Hayashi T; Kinoshita M
    J Chem Phys; 2017 Feb; 146(5):055102. PubMed ID: 28178788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature induced change of TMAO effects on hydrophobic hydration.
    Folberth A; van der Vegt NFA
    J Chem Phys; 2022 May; 156(18):184501. PubMed ID: 35568566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophobic and ionic interactions in nanosized water droplets.
    Vaitheeswaran S; Thirumalai D
    J Am Chem Soc; 2006 Oct; 128(41):13490-6. PubMed ID: 17031962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydration Properties and Solvent Effects for All-Atom Solutes in Polarizable Coarse-Grained Water.
    Yan XC; Tirado-Rives J; Jorgensen WL
    J Phys Chem B; 2016 Aug; 120(33):8102-14. PubMed ID: 26901452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple model of hydrophobic hydration.
    Lukšič M; Urbic T; Hribar-Lee B; Dill KA
    J Phys Chem B; 2012 May; 116(21):6177-86. PubMed ID: 22564051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential of mean force of hydrophobic association: dependence on solute size.
    Sobolewski E; Makowski M; Czaplewski C; Liwo A; Ołdziej S; Scheraga HA
    J Phys Chem B; 2007 Sep; 111(36):10765-74. PubMed ID: 17713937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvation thermodynamics of biopolymers. I. Separation of the volume and surface interactions with estimates for proteins.
    Ben-Naim A; Ting KL; Jernigan RL
    Biopolymers; 1989 Jul; 28(7):1309-25. PubMed ID: 2775844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of urea on aqueous hydrophobic contact-pair interactions.
    Shpiruk TA; Khajehpour M
    Phys Chem Chem Phys; 2013 Jan; 15(1):213-22. PubMed ID: 23160346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulations of the hydrophobic effect in aqueous electrolyte solutions.
    Jönsson M; Skepö M; Linse P
    J Phys Chem B; 2006 May; 110(17):8782-8. PubMed ID: 16640436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of trimethylamine-N-oxide on pressure-induced dissolution of hydrophobic solute.
    Sarma R; Paul S
    J Chem Phys; 2012 Sep; 137(11):114503. PubMed ID: 22998267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Balancing hydrogen bonding and van der Waals interactions in cyclohexane-based bisamide and bisurea organogelators.
    Zweep N; Hopkinson A; Meetsma A; Browne WR; Feringa BL; van Esch JH
    Langmuir; 2009 Aug; 25(15):8802-9. PubMed ID: 20050051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of the hydrophobic interaction by simulations of the aggregation of small hydrophobic solutes in water.
    Raschke TM; Tsai J; Levitt M
    Proc Natl Acad Sci U S A; 2001 May; 98(11):5965-9. PubMed ID: 11353861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvophobic and solvophilic contributions in the water-to-aqueous guanidinium chloride transfer free energy of model peptides.
    Tomar DS; Ramesh N; Asthagiri D
    J Chem Phys; 2018 Jun; 148(22):222822. PubMed ID: 29907034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction-component analysis of the hydration and urea effects on cytochrome c.
    Yamamori Y; Ishizuka R; Karino Y; Sakuraba S; Matubayasi N
    J Chem Phys; 2016 Feb; 144(8):085102. PubMed ID: 26931726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A nucleation-based method to study hydrophobic interactions under confinement: enhanced hydrophobic association driven by energetic contributions.
    Kim H; Keasler SJ; Chen B
    J Phys Chem B; 2014 Jun; 118(24):6875-84. PubMed ID: 24853272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamics and the hydrophobic effect in a core-softened model and comparison with experiments.
    Huš M; Urbic T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022115. PubMed ID: 25215697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.