These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 9648832)
21. Glucose regulates acetyl-CoA carboxylase gene expression in a pancreatic beta-cell line (INS-1). Brun T; Roche E; Kim KH; Prentki M J Biol Chem; 1993 Sep; 268(25):18905-11. PubMed ID: 8103051 [TBL] [Abstract][Full Text] [Related]
22. Role of hexosamine biosynthesis in glucose-mediated up-regulation of lipogenic enzyme mRNA levels: effects of glucose, glutamine, and glucosamine on glycerophosphate dehydrogenase, fatty acid synthase, and acetyl-CoA carboxylase mRNA levels. Rumberger JM; Wu T; Hering MA; Marshall S J Biol Chem; 2003 Aug; 278(31):28547-52. PubMed ID: 12759350 [TBL] [Abstract][Full Text] [Related]
23. Enhanced de novo lipogenesis in the leptin-unresponsive pancreatic islets of prediabetic Zucker diabetic fatty rats: role in the pathogenesis of lipotoxic diabetes. Zhou YT; Shimabukuro M; Lee Y; Koyama K; Higa M; Ferguson T; Unger RH Diabetes; 1998 Dec; 47(12):1904-8. PubMed ID: 9836522 [TBL] [Abstract][Full Text] [Related]
25. Malonyl-CoA regulation in skeletal muscle: its link to cell citrate and the glucose-fatty acid cycle. Saha AK; Vavvas D; Kurowski TG; Apazidis A; Witters LA; Shafrir E; Ruderman NB Am J Physiol; 1997 Apr; 272(4 Pt 1):E641-8. PubMed ID: 9142886 [TBL] [Abstract][Full Text] [Related]
26. Glucose activation of acetyl-CoA carboxylase in association with insulin secretion in a pancreatic beta-cell line. Zhang S; Kim KH J Endocrinol; 1995 Oct; 147(1):33-41. PubMed ID: 7490534 [TBL] [Abstract][Full Text] [Related]
27. Metabolic consequence of long-term exposure of pancreatic beta cells to free fatty acid with special reference to glucose insensitivity. Iizuka K; Nakajima H; Namba M; Miyagawa Ji; Miyazaki J; Hanafusa T; Matsuzawa Y Biochim Biophys Acta; 2002 Jan; 1586(1):23-31. PubMed ID: 11781146 [TBL] [Abstract][Full Text] [Related]
28. Dietary fat-induced suppression of lipogenic enzymes in B/B rats during the development of diabetes. Cheema SK; Clandinin MT Lipids; 2000 Apr; 35(4):421-5. PubMed ID: 10858027 [TBL] [Abstract][Full Text] [Related]
29. Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis. Mao J; DeMayo FJ; Li H; Abu-Elheiga L; Gu Z; Shaikenov TE; Kordari P; Chirala SS; Heird WC; Wakil SJ Proc Natl Acad Sci U S A; 2006 May; 103(22):8552-7. PubMed ID: 16717184 [TBL] [Abstract][Full Text] [Related]
30. Effects of dietary nutrients on substrate and effector levels of lipogenic enzymes, and lipogenesis from tritiated water in rat liver. Katsurada A; Fukuda H; Iritani N Biochim Biophys Acta; 1986 Sep; 878(2):200-8. PubMed ID: 2875738 [TBL] [Abstract][Full Text] [Related]
31. Mechanisms by which carbohydrates regulate expression of genes for glycolytic and lipogenic enzymes. Girard J; Ferré P; Foufelle F Annu Rev Nutr; 1997; 17():325-52. PubMed ID: 9240931 [TBL] [Abstract][Full Text] [Related]
32. A role for malonyl-CoA in glucose-stimulated insulin secretion from clonal pancreatic beta-cells. Corkey BE; Glennon MC; Chen KS; Deeney JT; Matschinsky FM; Prentki M J Biol Chem; 1989 Dec; 264(36):21608-12. PubMed ID: 2689441 [TBL] [Abstract][Full Text] [Related]
33. Hormonal and nutritional regulation of lipogenic enzyme mRNA levels in rat primary white and brown adipocytes. Freake HC; Moon YK J Nutr Sci Vitaminol (Tokyo); 2003 Feb; 49(1):40-6. PubMed ID: 12882395 [TBL] [Abstract][Full Text] [Related]
34. The age-related inverse relationship between ob and lipogenic enzymes genes expression in rat white adipose tissue. Nogalska A; Pankiewicz A; Goyke E; Swierczynski J Exp Gerontol; 2003 Apr; 38(4):415-22. PubMed ID: 12670628 [TBL] [Abstract][Full Text] [Related]
35. Lipid rather than glucose metabolism is implicated in altered insulin secretion caused by oleate in INS-1 cells. Segall L; Lameloise N; Assimacopoulos-Jeannet F; Roche E; Corkey P; Thumelin S; Corkey BE; Prentki M Am J Physiol; 1999 Sep; 277(3):E521-8. PubMed ID: 10484365 [TBL] [Abstract][Full Text] [Related]
36. Chronic high glucose lowers pyruvate dehydrogenase activity in islets through enhanced production of long chain acyl-CoA: prevention of impaired glucose oxidation by enhanced pyruvate recycling through the malate-pyruvate shuttle. Liu YQ; Moibi JA; Leahy JL J Biol Chem; 2004 Feb; 279(9):7470-5. PubMed ID: 14660628 [TBL] [Abstract][Full Text] [Related]
37. Metabolic fate of glucose and candidate signaling and excess-fuel detoxification pathways in pancreatic β-cells. Mugabo Y; Zhao S; Lamontagne J; Al-Mass A; Peyot ML; Corkey BE; Joly E; Madiraju SRM; Prentki M J Biol Chem; 2017 May; 292(18):7407-7422. PubMed ID: 28280244 [TBL] [Abstract][Full Text] [Related]
38. Coordinate regulation of glycolytic and lipogenic gene expression by polyunsaturated fatty acids. Jump DB; Clarke SD; Thelen A; Liimatta M J Lipid Res; 1994 Jun; 35(6):1076-84. PubMed ID: 8077846 [TBL] [Abstract][Full Text] [Related]
39. Role of uncoupling protein-2 up-regulation and triglyceride accumulation in impaired glucose-stimulated insulin secretion in a beta-cell lipotoxicity model overexpressing sterol regulatory element-binding protein-1c. Yamashita T; Eto K; Okazaki Y; Yamashita S; Yamauchi T; Sekine N; Nagai R; Noda M; Kadowaki T Endocrinology; 2004 Aug; 145(8):3566-77. PubMed ID: 15059954 [TBL] [Abstract][Full Text] [Related]
40. A role for the malonyl-CoA/long-chain acyl-CoA pathway of lipid signaling in the regulation of insulin secretion in response to both fuel and nonfuel stimuli. Roduit R; Nolan C; Alarcon C; Moore P; Barbeau A; Delghingaro-Augusto V; Przybykowski E; Morin J; Massé F; Massie B; Ruderman N; Rhodes C; Poitout V; Prentki M Diabetes; 2004 Apr; 53(4):1007-19. PubMed ID: 15047616 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]