These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 9648936)

  • 1. Ion channels in vascular smooth muscle: alterations in essential hypertension.
    Martens JR; Gelband CH
    Proc Soc Exp Biol Med; 1998 Jul; 218(3):192-203. PubMed ID: 9648936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles.
    Tykocki NR; Boerman EM; Jackson WF
    Compr Physiol; 2017 Mar; 7(2):485-581. PubMed ID: 28333380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Angiotensin II type 1 receptor antisense gene therapy prevents altered renal vascular calcium homeostasis in hypertension.
    Gelband CH; Reaves PY; Evans J; Wang H; Katovich MJ; Raizada MK
    Hypertension; 1999 Jan; 33(1 Pt 2):360-5. PubMed ID: 9931130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Angiotensin I-converting enzyme antisense prevents altered renal vascular reactivity, but not high blood pressure, in spontaneously hypertensive rats.
    Gelband CH; Wang H; Gardon ML; Keene K; Goldberg DS; Reaves PY; Katovich MJ; Raizada MK
    Hypertension; 2000 Jan; 35(1 Pt 2):209-13. PubMed ID: 10642299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased function of voltage-dependent Ca++ channels and Ca(++)-activated K+ channels in resting state of femoral arteries from spontaneously hypertensive rats at prehypertensive stage.
    Asano M; Nomura Y; Ito K; Uyama Y; Imaizumi Y; Watanabe M
    J Pharmacol Exp Ther; 1995 Nov; 275(2):775-83. PubMed ID: 7473166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion channels and vascular tone.
    Jackson WF
    Hypertension; 2000 Jan; 35(1 Pt 2):173-8. PubMed ID: 10642294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms for regulation of arterial tone by Ca2+-dependent K+ channels in hypertension.
    Rusch NJ; Liu Y; Pleyte KA
    Clin Exp Pharmacol Physiol; 1996 Dec; 23(12):1077-81. PubMed ID: 8977163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NO hyperpolarizes pulmonary artery smooth muscle cells and decreases the intracellular Ca2+ concentration by activating voltage-gated K+ channels.
    Yuan XJ; Tod ML; Rubin LJ; Blaustein MP
    Proc Natl Acad Sci U S A; 1996 Sep; 93(19):10489-94. PubMed ID: 8816828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in the expression and function of arterial potassium channels during hypertension.
    Cox RH
    Vascul Pharmacol; 2002 Jan; 38(1):13-23. PubMed ID: 12378818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charybdotoxin-sensitive K+ channels regulate the myogenic tone in the resting state of arteries from spontaneously hypertensive rats.
    Asano M; Masuzawa-Ito K; Matsuda T
    Br J Pharmacol; 1993 Jan; 108(1):214-22. PubMed ID: 7679030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Ca2+- and swelling-activated Cl- channels in alpha1-adrenoceptor-mediated tone in pressurized rabbit mesenteric arterioles.
    Remillard CV; Lupien MA; Crépeau V; Leblanc N
    Cardiovasc Res; 2000 Jun; 46(3):557-68. PubMed ID: 10912466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca2+ channels, ryanodine receptors and Ca(2+)-activated K+ channels: a functional unit for regulating arterial tone.
    Jaggar JH; Wellman GC; Heppner TJ; Porter VA; Perez GJ; Gollasch M; Kleppisch T; Rubart M; Stevenson AS; Lederer WJ; Knot HJ; Bonev AD; Nelson MT
    Acta Physiol Scand; 1998 Dec; 164(4):577-87. PubMed ID: 9887980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased expression of Ca2+-sensitive K+ channels in aorta of hypertensive rats.
    Liu Y; Pleyte K; Knaus HG; Rusch NJ
    Hypertension; 1997 Dec; 30(6):1403-9. PubMed ID: 9403560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased expression of Ca2+-sensitive K+ channels in the cerebral microcirculation of genetically hypertensive rats: evidence for their protection against cerebral vasospasm.
    Liu Y; Hudetz AG; Knaus HG; Rusch NJ
    Circ Res; 1998 Apr; 82(6):729-37. PubMed ID: 9546382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium handling in afferent arterioles.
    Salomonsson M; Sorensen CM; Arendshorst WJ; Steendahl J; Holstein-Rathlou NH
    Acta Physiol Scand; 2004 Aug; 181(4):421-9. PubMed ID: 15283754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in arterial smooth muscle contractility, contractile proteins, and arterial wall structure in spontaneous hypertension.
    Packer CS
    Proc Soc Exp Biol Med; 1994 Nov; 207(2):148-74. PubMed ID: 7938046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Augmented contributions of voltage-gated Ca2+ channels to contractile responses in spontaneously hypertensive rat mesenteric arteries.
    Matsuda K; Lozinskaya I; Cox RH
    Am J Hypertens; 1997 Nov; 10(11):1231-9. PubMed ID: 9397241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium-activated cation channel in rat portal vein myocytes.
    Loirand G; Pacaud P; Baron A; Mironneau C; Mironneau J
    Z Kardiol; 1991; 80 Suppl 7():59-63. PubMed ID: 1724331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological roles of K+ channels in vascular smooth muscle cells.
    Ko EA; Han J; Jung ID; Park WS
    J Smooth Muscle Res; 2008 Apr; 44(2):65-81. PubMed ID: 18552454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in TRPC3 and TRPC6 channels assembly in mesenteric vascular smooth muscle cells in essential hypertension.
    Álvarez-Miguel I; Cidad P; Pérez-García MT; López-López JR
    J Physiol; 2017 Mar; 595(5):1497-1513. PubMed ID: 27861908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.