These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
334 related articles for article (PubMed ID: 9649305)
1. A single amino acid substitution changes ribonuclease 4 from a uridine-specific to a cytidine-specific enzyme. Hofsteenge J; Moldow C; Vicentini AM; Zelenko O; Jarai-Kote Z; Neumann U Biochemistry; 1998 Jun; 37(26):9250-7. PubMed ID: 9649305 [TBL] [Abstract][Full Text] [Related]
2. Structural determinants of the uridine-preferring specificity of RNase PL3. Vicentini AM; Kote-Jarai Z; Hofsteenge J Biochemistry; 1996 Jul; 35(28):9128-32. PubMed ID: 8703917 [TBL] [Abstract][Full Text] [Related]
3. Residues 36-42 of liver RNase PL3 contribute to its uridine-preferring substrate specificity. Cloning of the cDNA and site-directed mutagenesis studies. Vicentini AM; Hemmings BA; Hofsteenge J Protein Sci; 1994 Mar; 3(3):459-66. PubMed ID: 8019417 [TBL] [Abstract][Full Text] [Related]
4. Crystal structures of the ribonuclease MC1 from bitter gourd seeds, complexed with 2'-UMP or 3'-UMP, reveal structural basis for uridine specificity. Suzuki A; Yao M; Tanaka I; Numata T; Kikukawa S; Yamasaki N; Kimura M Biochem Biophys Res Commun; 2000 Aug; 275(2):572-6. PubMed ID: 10964705 [TBL] [Abstract][Full Text] [Related]
5. A residue to residue hydrogen bond mediates the nucleotide specificity of ribonuclease A. delCardayré SB; Raines RT J Mol Biol; 1995 Sep; 252(3):328-36. PubMed ID: 7563054 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional structure of a human pancreatic ribonuclease variant, a step forward in the design of cytotoxic ribonucleases. Pous J; Canals A; Terzyan SS; Guasch A; Benito A; Ribó M; Vilanova M; Coll M J Mol Biol; 2000 Oct; 303(1):49-60. PubMed ID: 11021969 [TBL] [Abstract][Full Text] [Related]
7. Coulombic forces in protein-RNA interactions: binding and cleavage by ribonuclease A and variants at Lys7, Arg10, and Lys66. Fisher BM; Ha JH; Raines RT Biochemistry; 1998 Sep; 37(35):12121-32. PubMed ID: 9724524 [TBL] [Abstract][Full Text] [Related]
8. Coulombic effects of remote subsites on the active site of ribonuclease A. Fisher BM; Schultz LW; Raines RT Biochemistry; 1998 Dec; 37(50):17386-401. PubMed ID: 9860854 [TBL] [Abstract][Full Text] [Related]
9. The three-dimensional structure of human RNase 4, unliganded and complexed with d(Up), reveals the basis for its uridine selectivity. Terzyan SS; Peracaula R; de Llorens R; Tsushima Y; Yamada H; Seno M; Gomis-Rüth FX; Coll M J Mol Biol; 1999 Jan; 285(1):205-14. PubMed ID: 9878400 [TBL] [Abstract][Full Text] [Related]
10. Degradation of double-stranded RNA by human pancreatic ribonuclease: crucial role of noncatalytic basic amino acid residues. Sorrentino S; Naddeo M; Russo A; D'Alessio G Biochemistry; 2003 Sep; 42(34):10182-90. PubMed ID: 12939146 [TBL] [Abstract][Full Text] [Related]
11. Comparison of the structural and functional properties of RNase A and BS-RNase: a stepwise mutagenesis approach. Ercole C; Colamarino RA; Pizzo E; Fogolari F; Spadaccini R; Picone D Biopolymers; 2009 Dec; 91(12):1009-17. PubMed ID: 19263489 [TBL] [Abstract][Full Text] [Related]
12. Uridine kinase: altered enzyme with decreased affinities for uridine and CTP. Ropp PA; Traut TW Arch Biochem Biophys; 1998 Nov; 359(1):63-8. PubMed ID: 9799561 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure and structure-based mutational analyses of RNase HIII from Bacillus stearothermophilus: a new type 2 RNase H with TBP-like substrate-binding domain at the N terminus. Chon H; Matsumura H; Koga Y; Takano K; Kanaya S J Mol Biol; 2006 Feb; 356(1):165-78. PubMed ID: 16343535 [TBL] [Abstract][Full Text] [Related]
14. Altering substrate specificity of phosphatidylcholine-preferring phospholipase C of Bacillus cereus by random mutagenesis of the headgroup binding site. Antikainen NM; Hergenrother PJ; Harris MM; Corbett W; Martin SF Biochemistry; 2003 Feb; 42(6):1603-10. PubMed ID: 12578373 [TBL] [Abstract][Full Text] [Related]
15. Structural features that determine the enzymatic potency and specificity of human angiogenin: threonine-80 and residues 58-70 and 116-123. Shapiro R Biochemistry; 1998 May; 37(19):6847-56. PubMed ID: 9578571 [TBL] [Abstract][Full Text] [Related]
16. The amino acid sequence of human ribonuclease 4, a highly conserved ribonuclease that cleaves specifically on the 3' side of uridine. Zhou HM; Strydom DJ Eur J Biochem; 1993 Oct; 217(1):401-10. PubMed ID: 8223579 [TBL] [Abstract][Full Text] [Related]
17. Role of amino-acid residue 95 in substrate specificity of phosphagen kinases. Tanaka K; Suzuki T FEBS Lett; 2004 Aug; 573(1-3):78-82. PubMed ID: 15327979 [TBL] [Abstract][Full Text] [Related]
18. Engineering of pyridine nucleotide specificity of nitrate reductase: mutagenesis of recombinant cytochrome b reductase fragment of Neurospora crassa NADPH:Nitrate reductase. Shiraishi N; Croy C; Kaur J; Campbell WH Arch Biochem Biophys; 1998 Oct; 358(1):104-15. PubMed ID: 9750171 [TBL] [Abstract][Full Text] [Related]
19. Crystallographic studies on structural features that determine the enzymatic specificity and potency of human angiogenin: Thr44, Thr80, and residues 38-41. Holloway DE; Chavali GB; Hares MC; Baker MD; Subbarao GV; Shapiro R; Acharya KR Biochemistry; 2004 Feb; 43(5):1230-41. PubMed ID: 14756559 [TBL] [Abstract][Full Text] [Related]
20. Crystal structures of the ribonuclease MC1 mutants N71T and N71S in complex with 5'-GMP: structural basis for alterations in substrate specificity. Numata T; Suzuki A; Kakuta Y; Kimura K; Yao M; Tanaka I; Yoshida Y; Ueda T; Kimura M Biochemistry; 2003 May; 42(18):5270-8. PubMed ID: 12731868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]