BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 9649325)

  • 1. Influence of hairpins on template reannealing at trinucleotide repeat duplexes: a model for slipped DNA.
    Gacy AM; McMurray CT
    Biochemistry; 1998 Jun; 37(26):9426-34. PubMed ID: 9649325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of sequence context and length on the structure and stability of triplet repeat DNA oligomers.
    Paiva AM; Sheardy RD
    Biochemistry; 2004 Nov; 43(44):14218-27. PubMed ID: 15518572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of sequence context and length on the kinetics of DNA duplex formation from complementary hairpins possessing (CNG) repeats.
    Paiva AM; Sheardy RD
    J Am Chem Soc; 2005 Apr; 127(15):5581-5. PubMed ID: 15826196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile X loci.
    Pearson CE; Sinden RR
    Biochemistry; 1996 Apr; 35(15):5041-53. PubMed ID: 8664297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic stability of RNA structures formed by CNG trinucleotide repeats. Implication for prediction of RNA structure.
    Broda M; Kierzek E; Gdaniec Z; Kulinski T; Kierzek R
    Biochemistry; 2005 Aug; 44(32):10873-82. PubMed ID: 16086590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution structures of the Huntington's disease DNA triplets, (CAG)n.
    Mariappan SV; Silks LA; Chen X; Springer PA; Wu R; Moyzis RK; Bradbury EM; Garcia AE; Gupta G
    J Biomol Struct Dyn; 1998 Feb; 15(4):723-44. PubMed ID: 9514249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The helix-coil transition of DNA duplexes and hairpins observed by multiple fluorescence parameters.
    Vámosi G; Clegg RM
    Biochemistry; 1998 Oct; 37(40):14300-16. PubMed ID: 9760268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of d(GT)n.d(GA)n sequences: formation of parallel stranded duplex DNA.
    Germann MW; Kalisch BW; van de Sande JH
    Biochemistry; 1998 Sep; 37(37):12962-70. PubMed ID: 9737876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and dynamics in DNA looped domains: CAG triplet repeat sequence dynamics probed by 2-aminopurine fluorescence.
    Lee BJ; Barch M; Castner EW; Völker J; Breslauer KJ
    Biochemistry; 2007 Sep; 46(38):10756-66. PubMed ID: 17718541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational properties of DNA containing (CCA)n and (TGG)n trinucleotide repeats.
    Zemánek M; Kypr J; Vorlícková M
    Int J Biol Macromol; 2005 Jul; 36(1-2):23-32. PubMed ID: 15896838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The guanine-rich fragile X chromosome repeats are reluctant to form tetraplexes.
    Fojtík P; Kejnovská I; Vorlícková M
    Nucleic Acids Res; 2004; 32(1):298-306. PubMed ID: 14718550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA and RNA oligomer sequences from the 3' noncoding region of the chicken glutamine synthetase gene from intramolecular hairpins.
    Riccelli PV; Hilario J; Gallo FJ; Young AP; Benight AS
    Biochemistry; 1996 Dec; 35(48):15364-72. PubMed ID: 8952488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulation of DNA strand slippage synthesis by a bulge binding synthetic agent.
    Kappen LS; Xi Z; Jones GB; Goldberg IH
    Biochemistry; 2003 Feb; 42(7):2166-73. PubMed ID: 12590606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural roles of CTG repeats in slippage expansion during DNA replication.
    Chi LM; Lam SL
    Nucleic Acids Res; 2005; 33(5):1604-17. PubMed ID: 15767285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slipped structures in DNA triplet repeat sequences: entropic contributions to genetic instabilities.
    Harvey SC
    Biochemistry; 1997 Mar; 36(11):3047-9. PubMed ID: 9115978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetically unstable CXG repeats are structurally dynamic and have a high propensity for folding. An NMR and UV spectroscopic study.
    Zheng M; Huang X; Smith GK; Yang X; Gao X
    J Mol Biol; 1996 Nov; 264(2):323-36. PubMed ID: 8951379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Duplex and quadruplex DNA binding and photocleavage by trioxatriangulenium ion.
    Pothukuchy A; Mazzitelli CL; Rodriguez ML; Tuesuwan B; Salazar M; Brodbelt JS; Kerwin SM
    Biochemistry; 2005 Feb; 44(6):2163-72. PubMed ID: 15697242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melting studies of short DNA hairpins: influence of loop sequence and adjoining base pair identity on hairpin thermodynamic stability.
    Vallone PM; Paner TM; Hilario J; Lane MJ; Faldasz BD; Benight AS
    Biopolymers; 1999 Oct; 50(4):425-42. PubMed ID: 10423551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and folding dynamics of a DNA hairpin with a stabilising d(GNA) trinucleotide loop: influence of base pair mis-matches and point mutations on conformational equilibria.
    Balkwill GD; Williams HE; Searle MS
    Org Biomol Chem; 2007 Mar; 5(5):832-9. PubMed ID: 17315071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational energetics of stable and metastable states formed by DNA triplet repeat oligonucleotides: implications for triplet expansion diseases.
    Völker J; Makube N; Plum GE; Klump HH; Breslauer KJ
    Proc Natl Acad Sci U S A; 2002 Nov; 99(23):14700-5. PubMed ID: 12417759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.