BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 9649333)

  • 1. Nonesterified fatty acids induce transmembrane monovalent cation flux: host-guest interactions as determinants of fatty acid-induced ion transport.
    Zeng Y; Han X; Schlesinger P; Gross RW
    Biochemistry; 1998 Jun; 37(26):9497-508. PubMed ID: 9649333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phospholipid subclass specific alterations in the passive ion permeability of membrane bilayers: separation of enthalpic and entropic contributions to transbilayer ion flux.
    Zeng Y; Han X; Gross RW
    Biochemistry; 1998 Feb; 37(8):2346-55. PubMed ID: 9485381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of long-chain native fatty acids across lipid bilayer membranes indicates that transbilayer flip-flop is rate limiting.
    Kleinfeld AM; Chu P; Romero C
    Biochemistry; 1997 Nov; 36(46):14146-58. PubMed ID: 9369487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton flux induced by free fatty acids across phospholipid bilayers: new evidences based on short-circuit measurements in planar lipid membranes.
    Arcisio-Miranda M; Abdulkader F; Brunaldi K; Curi R; Procopio J
    Arch Biochem Biophys; 2009 Apr; 484(1):63-9. PubMed ID: 19423422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Permeability of membranes to amino acids and modified amino acids: mechanisms involved in translocation.
    Chakrabarti AC
    Amino Acids; 1994; 6():213-29. PubMed ID: 11543596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free fatty acids modulate intermembrane trafficking of cholesterol by increasing lipid mobilities: novel 13C NMR analyses of free cholesterol partitioning.
    Johnson RA; Hamilton JA; Worgall TS; Deckelbaum RJ
    Biochemistry; 2003 Feb; 42(6):1637-45. PubMed ID: 12578377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phospholipid flop induced by transmembrane peptides in model membranes is modulated by lipid composition.
    Kol MA; van Laak AN; Rijkers DT; Killian JA; de Kroon AI; de Kruijff B
    Biochemistry; 2003 Jan; 42(1):231-7. PubMed ID: 12515559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How fatty acids of different chain length enter and leave cells by free diffusion.
    Kamp F; Hamilton JA
    Prostaglandins Leukot Essent Fatty Acids; 2006 Sep; 75(3):149-59. PubMed ID: 16829065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [History and importance of electrically excitable artificial membranes].
    Monnier AM
    Rev Can Biol Exp; 1982 Mar; 41(1):47-63. PubMed ID: 7048441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of caveolin-1 and cholesterol in transmembrane fatty acid movement.
    Meshulam T; Simard JR; Wharton J; Hamilton JA; Pilch PF
    Biochemistry; 2006 Mar; 45(9):2882-93. PubMed ID: 16503643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery.
    Li W; Nicol F; Szoka FC
    Adv Drug Deliv Rev; 2004 Apr; 56(7):967-85. PubMed ID: 15066755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potassium flux through gramicidin ion channels is augmented in vesicles comprised of plasmenylcholine: correlations between gramicidin conformation and function in chemically distinct host bilayer matrices.
    Chen X; Gross RW
    Biochemistry; 1995 Jun; 34(22):7356-64. PubMed ID: 7540040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane.
    Gurtovenko AA; Vattulainen I
    J Phys Chem B; 2008 Feb; 112(7):1953-62. PubMed ID: 18225878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free fatty acids act as endogenous ionophores, resulting in Na+ and Ca2+ influx and myocyte apoptosis.
    Fang KM; Lee AS; Su MJ; Lin CL; Chien CL; Wu ML
    Cardiovasc Res; 2008 Jun; 78(3):533-45. PubMed ID: 18267958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis.
    Ziegler A; Blatter XL; Seelig A; Seelig J
    Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct participation of phospholipids in transmembrane K(+)-transport.
    Evtodienko YuV ; Kudzina LuY ; Medvedev BI; Yurkov IS
    Membr Cell Biol; 1997; 10(5):573-81. PubMed ID: 9225261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epidermal growth factor receptor transmembrane domain: 2H NMR implications for orientation and motion in a bilayer environment.
    Jones DH; Barber KR; VanDerLoo EW; Grant CW
    Biochemistry; 1998 Nov; 37(47):16780-7. PubMed ID: 9843449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Structural rearrangements induced by glycerol increase the permeability of bilayer lipid membranes for amphotericin].
    Rudenko SV
    Biofizika; 1986; 31(1):59-63. PubMed ID: 2420371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transbilayer movement of fully ionized taurine-conjugated bile salts depends upon bile salt concentration, hydrophobicity, and membrane cholesterol content.
    Donovan JM; Jackson AA
    Biochemistry; 1997 Sep; 36(38):11444-51. PubMed ID: 9298964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Penetration of ascorbic acid into bilayer phospholipid membranes].
    Kraĭnev AG; Vaĭner LM
    Biokhimiia; 1988 Dec; 53(12):1987-95. PubMed ID: 3250621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.