These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1139 related articles for article (PubMed ID: 9649334)
1. Conformation and lipid binding properties of four peptides derived from the membrane-binding domain of CTP:phosphocholine cytidylyltransferase. Johnson JE; Rao NM; Hui SW; Cornell RB Biochemistry; 1998 Jun; 37(26):9509-19. PubMed ID: 9649334 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the lipid-binding domain of the Plasmodium falciparum CTP:phosphocholine cytidylyltransferase through synthetic-peptide studies. Larvor MP; Cerdan R; Gumila C; Maurin L; Seta P; Roustan C; Vial H Biochem J; 2003 Nov; 375(Pt 3):653-61. PubMed ID: 12901716 [TBL] [Abstract][Full Text] [Related]
3. Lipid-induced conformational switch in the membrane binding domain of CTP:phosphocholine cytidylyltransferase: a circular dichroism study. Taneva S; Johnson JE; Cornell RB Biochemistry; 2003 Oct; 42(40):11768-76. PubMed ID: 14529288 [TBL] [Abstract][Full Text] [Related]
4. Structure of the membrane binding domain of CTP:phosphocholine cytidylyltransferase. Dunne SJ; Cornell RB; Johnson JE; Glover NR; Tracey AS Biochemistry; 1996 Sep; 35(37):11975-84. PubMed ID: 8810902 [TBL] [Abstract][Full Text] [Related]
5. Insertion and orientation of a synthetic peptide representing the C-terminus of the A1 domain of Shiga toxin into phospholipid membranes. Saleh MT; Ferguson J; Boggs JM; Gariépy J Biochemistry; 1996 Jul; 35(29):9325-34. PubMed ID: 8755710 [TBL] [Abstract][Full Text] [Related]
6. The cytoplasmic domains of phospholamban and phospholemman associate with phospholipid membrane surfaces. Clayton JC; Hughes E; Middleton DA Biochemistry; 2005 Dec; 44(51):17016-26. PubMed ID: 16363815 [TBL] [Abstract][Full Text] [Related]
7. Binding of CTP:phosphocholine cytidylyltransferase to lipid vesicles: diacylglycerol and enzyme dephosphorylation increase the affinity for negatively charged membranes. Arnold RS; DePaoli-Roach AA; Cornell RB Biochemistry; 1997 May; 36(20):6149-56. PubMed ID: 9166786 [TBL] [Abstract][Full Text] [Related]
9. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis. Ziegler A; Blatter XL; Seelig A; Seelig J Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253 [TBL] [Abstract][Full Text] [Related]
10. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Dathe M; Schümann M; Wieprecht T; Winkler A; Beyermann M; Krause E; Matsuzaki K; Murase O; Bienert M Biochemistry; 1996 Sep; 35(38):12612-22. PubMed ID: 8823199 [TBL] [Abstract][Full Text] [Related]
11. Lipid regulation of CTP: phosphocholine cytidylyltransferase: electrostatic, hydrophobic, and synergistic interactions of anionic phospholipids and diacylglycerol. Arnold RS; Cornell RB Biochemistry; 1996 Jul; 35(30):9917-24. PubMed ID: 8703966 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain. Galanth C; Abbassi F; Lequin O; Ayala-Sanmartin J; Ladram A; Nicolas P; Amiche M Biochemistry; 2009 Jan; 48(2):313-27. PubMed ID: 19113844 [TBL] [Abstract][Full Text] [Related]
13. Anionic phospholipids modulate peptide insertion into membranes. Liu LP; Deber CM Biochemistry; 1997 May; 36(18):5476-82. PubMed ID: 9154930 [TBL] [Abstract][Full Text] [Related]
14. Membrane binding of pH-sensitive influenza fusion peptides. positioning, configuration, and induced leakage in a lipid vesicle model. Esbjörner EK; Oglecka K; Lincoln P; Gräslund A; Nordén B Biochemistry; 2007 Nov; 46(47):13490-504. PubMed ID: 17973492 [TBL] [Abstract][Full Text] [Related]
15. Dermaseptin S9, an alpha-helical antimicrobial peptide with a hydrophobic core and cationic termini. Lequin O; Ladram A; Chabbert L; Bruston F; Convert O; Vanhoye D; Chassaing G; Nicolas P; Amiche M Biochemistry; 2006 Jan; 45(2):468-80. PubMed ID: 16401077 [TBL] [Abstract][Full Text] [Related]
16. Modulation of the binding of signal peptides to lipid bilayers by dipoles near the hydrocarbon-water interface. Voglino L; McIntosh TJ; Simon SA Biochemistry; 1998 Sep; 37(35):12241-52. PubMed ID: 9724538 [TBL] [Abstract][Full Text] [Related]
17. Structural characterization and topology of the second potential membrane anchor region in the thromboxane A2 synthase amino-terminal domain. Ruan KH; Li D; Ji J; Lin YZ; Gao X Biochemistry; 1998 Jan; 37(3):822-30. PubMed ID: 9454571 [TBL] [Abstract][Full Text] [Related]
18. Studies of synthetic peptides of human apolipoprotein A-I containing tandem amphipathic alpha-helixes. Mishra VK; Palgunachari MN; Datta G; Phillips MC; Lund-Katz S; Adeyeye SO; Segrest JP; Anantharamaiah GM Biochemistry; 1998 Jul; 37(28):10313-24. PubMed ID: 9665740 [TBL] [Abstract][Full Text] [Related]
19. N-terminal hydrophobic residues of the G-protein ADP-ribosylation factor-1 insert into membrane phospholipids upon GDP to GTP exchange. Antonny B; Beraud-Dufour S; Chardin P; Chabre M Biochemistry; 1997 Apr; 36(15):4675-84. PubMed ID: 9109679 [TBL] [Abstract][Full Text] [Related]
20. Amphiphilicity determines binding properties of three mitochondrial presequences to lipid surfaces. Hammen PK; Gorenstein DG; Weiner H Biochemistry; 1996 Mar; 35(12):3772-81. PubMed ID: 8619998 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]