These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Reentry in heterogeneous cardiac tissue described by the Luo-Rudy ventricular action potential model. Ten Tusscher KH; Panfilov AV Am J Physiol Heart Circ Physiol; 2003 Feb; 284(2):H542-8. PubMed ID: 12388228 [TBL] [Abstract][Full Text] [Related]
6. Nonuniform muscle fiber orientation causes spiral wave drift in a finite element model of cardiac action potential propagation. Rogers JM; McCulloch AD J Cardiovasc Electrophysiol; 1994 Jun; 5(6):496-509. PubMed ID: 8087294 [TBL] [Abstract][Full Text] [Related]
7. Anisotropic shortening in the wavelength of electrical waves promotes onset of electrical turbulence in cardiac tissue: An in silico study. Zimik S; Pandit R; Majumder R PLoS One; 2020; 15(3):e0230214. PubMed ID: 32168323 [TBL] [Abstract][Full Text] [Related]
8. Cardiac electrical restitution properties and stability of reentrant spiral waves: a simulation study. Qu Z; Weiss JN; Garfinkel A Am J Physiol; 1999 Jan; 276(1):H269-83. PubMed ID: 9887041 [TBL] [Abstract][Full Text] [Related]
10. A Parsimonious Model of the Rabbit Action Potential Elucidates the Minimal Physiological Requirements for Alternans and Spiral Wave Breakup. Gray RA; Pathmanathan P PLoS Comput Biol; 2016 Oct; 12(10):e1005087. PubMed ID: 27749895 [TBL] [Abstract][Full Text] [Related]
11. Two forms of spiral-wave reentry in an ionic model of ischemic ventricular myocardium. Xu A; Guevara MR Chaos; 1998 Mar; 8(1):157-174. PubMed ID: 12779719 [TBL] [Abstract][Full Text] [Related]
12. [Numerical Simulation of Propagation of Electric Excitation in the Heart Wall Taking into Account Its Fibrous-Laminar Structure]. Vasserman IN; Matveenko VP; Shardakov IN; Shestakov AP Biofizika; 2015; 60(4):748-57. PubMed ID: 26394475 [TBL] [Abstract][Full Text] [Related]
13. Spiral waves in a computer model of cardiac excitation. Abildskov JA; Lux RL Pacing Clin Electrophysiol; 1994 May; 17(5 Pt 1):944-52. PubMed ID: 7517529 [TBL] [Abstract][Full Text] [Related]
14. Wave-front curvature as a cause of slow conduction and block in isolated cardiac muscle. Cabo C; Pertsov AM; Baxter WT; Davidenko JM; Gray RA; Jalife J Circ Res; 1994 Dec; 75(6):1014-28. PubMed ID: 7525101 [TBL] [Abstract][Full Text] [Related]
15. Turbulent electrical activity at sharp-edged inexcitable obstacles in a model for human cardiac tissue. Majumder R; Pandit R; Panfilov AV Am J Physiol Heart Circ Physiol; 2014 Oct; 307(7):H1024-35. PubMed ID: 25108011 [TBL] [Abstract][Full Text] [Related]
16. Spiral-wave dynamics depend sensitively on inhomogeneities in mathematical models of ventricular tissue. Shajahan TK; Sinha S; Pandit R Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011929. PubMed ID: 17358206 [TBL] [Abstract][Full Text] [Related]
17. Vortex shedding as a precursor of turbulent electrical activity in cardiac muscle. Cabo C; Pertsov AM; Davidenko JM; Baxter WT; Gray RA; Jalife J Biophys J; 1996 Mar; 70(3):1105-11. PubMed ID: 8785270 [TBL] [Abstract][Full Text] [Related]
18. Vulnerability in an excitable medium: analytical and numerical studies of initiating unidirectional propagation. Starmer CF; Biktashev VN; Romashko DN; Stepanov MR; Makarova ON; Krinsky VI Biophys J; 1993 Nov; 65(5):1775-87. PubMed ID: 8298011 [TBL] [Abstract][Full Text] [Related]
19. Intramural activation and repolarization sequences in canine ventricles. Experimental and simulation studies. Taccardi B; Punske BB; Sachse F; Tricoche X; Colli-Franzone P; Pavarino LF; Zabawa C J Electrocardiol; 2005 Oct; 38(4 Suppl):131-7. PubMed ID: 16226088 [TBL] [Abstract][Full Text] [Related]