These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 9649416)
1. ATP-Induced phosphorylation of the sarcoplasmic reticulum Ca2+ ATPase: molecular interpretation of infrared difference spectra. Barth A; Mäntele W Biophys J; 1998 Jul; 75(1):538-44. PubMed ID: 9649416 [TBL] [Abstract][Full Text] [Related]
2. Structural changes of the sarcoplasmic reticulum Ca(2+)-ATPase upon nucleotide binding studied by fourier transform infrared spectroscopy. von Germar F; Barth A; Mäntele W Biophys J; 2000 Mar; 78(3):1531-40. PubMed ID: 10692337 [TBL] [Abstract][Full Text] [Related]
3. Mapping nucleotide binding site of calcium ATPase with IR spectroscopy: effects of ATP gamma-phosphate binding. Liu M; Barth A Biopolymers; 2002; 67(4-5):267-70. PubMed ID: 12012444 [TBL] [Abstract][Full Text] [Related]
4. TNP-AMP binding to the sarcoplasmic reticulum Ca(2+)-ATPase studied by infrared spectroscopy. Liu M; Barth A Biophys J; 2003 Nov; 85(5):3262-70. PubMed ID: 14581226 [TBL] [Abstract][Full Text] [Related]
5. FTIR studies on the bond properties of the aspartyl phosphate moiety of the Ca2+ -ATPase. Andersson J; Barth A Biopolymers; 2006 Jul; 82(4):353-7. PubMed ID: 16380945 [TBL] [Abstract][Full Text] [Related]
6. Changes of protein structure, nucleotide microenvironment, and Ca(2+)-binding states in the catalytic cycle of sarcoplasmic reticulum Ca(2+)-ATPase: investigation of nucleotide binding, phosphorylation and phosphoenzyme conversion by FTIR difference spectroscopy. Barth A; Kreutz W; Mäntele W Biochim Biophys Acta; 1994 Aug; 1194(1):75-91. PubMed ID: 8075144 [TBL] [Abstract][Full Text] [Related]
7. Interactions of phosphate groups of ATP and Aspartyl phosphate with the sarcoplasmic reticulum Ca2+-ATPase: an FTIR study. Liu M; Krasteva M; Barth A Biophys J; 2005 Dec; 89(6):4352-63. PubMed ID: 16169973 [TBL] [Abstract][Full Text] [Related]
8. Phosphoenzyme conversion of the sarcoplasmic reticulum Ca(2+)-ATPase. Molecular interpretation of infrared difference spectra. Barth A J Biol Chem; 1999 Aug; 274(32):22170-5. PubMed ID: 10428781 [TBL] [Abstract][Full Text] [Related]
9. A1 reduction in intact cyanobacterial photosystem I particles studied by time-resolved step-scan Fourier transform infrared difference spectroscopy and isotope labeling. Sivakumar V; Wang R; Hastings G Biochemistry; 2005 Feb; 44(6):1880-93. PubMed ID: 15697214 [TBL] [Abstract][Full Text] [Related]
10. The time-dependent distribution of phosphorylated intermediates in native sarcoplasmic reticulum Ca2+-ATPase from skeletal muscle is not compatible with a linear kinetic model. Mahaney JE; Thomas DD; Froehlich JP Biochemistry; 2004 Apr; 43(14):4400-16. PubMed ID: 15065885 [TBL] [Abstract][Full Text] [Related]
11. Phosphorylation of the sarcoplasmic reticulum Ca(2+)-ATPase from ATP and ATP analogs studied by infrared spectroscopy. Liu M; Barth A J Biol Chem; 2004 Nov; 279(48):49902-9. PubMed ID: 15381702 [TBL] [Abstract][Full Text] [Related]
12. Time-resolved infrared spectroscopy of the Ca2+-ATPase. The enzyme at work. Barth A; von Germar F; Kreutz W; Mäntele W J Biol Chem; 1996 Nov; 271(48):30637-46. PubMed ID: 8940039 [TBL] [Abstract][Full Text] [Related]
13. Phosphoryl transfer and calcium ion occlusion in the calcium pump. Sørensen TL; Møller JV; Nissen P Science; 2004 Jun; 304(5677):1672-5. PubMed ID: 15192230 [TBL] [Abstract][Full Text] [Related]
14. Difference FTIR studies reveal nitrogen-containing amino acid side chains are involved in the allosteric regulation of RecA. Schwartz CM; Drown PM; MacDonald G Biochemistry; 2005 Jul; 44(28):9733-45. PubMed ID: 16008358 [TBL] [Abstract][Full Text] [Related]
15. A time-resolved Fourier transformed infrared difference spectroscopy study of the sarcoplasmic reticulum Ca(2+)-ATPase: kinetics of the high-affinity calcium binding at low temperature. Troullier A; Gerwert K; Dupont Y Biophys J; 1996 Dec; 71(6):2970-83. PubMed ID: 8968569 [TBL] [Abstract][Full Text] [Related]
16. Topology of sarcoplasmic reticulum Ca2+-ATPase: an infrared study of thermal denaturation and limited proteolysis. Echabe I; Dornberger U; Prado A; Goñi FM; Arrondo JL Protein Sci; 1998 May; 7(5):1172-9. PubMed ID: 9605321 [TBL] [Abstract][Full Text] [Related]
17. Role of water in processes of energy transduction: Ca2+-transport ATPase and inorganic pyrophosphatase. de Meis L Biochem Soc Symp; 1985; 50():97-125. PubMed ID: 2428374 [TBL] [Abstract][Full Text] [Related]
18. Crystal structure of the calcium pump with a bound ATP analogue. Toyoshima C; Mizutani T Nature; 2004 Jul; 430(6999):529-35. PubMed ID: 15229613 [TBL] [Abstract][Full Text] [Related]
19. Energy transduction and kinetic regulation by the peptide segment connecting phosphorylation and cation binding domains in transport ATPases. Garnett C; Sumbilla C; Belda FF; Chen L; Inesi G Biochemistry; 1996 Aug; 35(34):11019-25. PubMed ID: 8780503 [TBL] [Abstract][Full Text] [Related]
20. Infrared studies reveal unique vibrations associated with the PGK-ATP-3-PG ternary complex. White EM; Holland AR; MacDonald G Biochemistry; 2008 Jan; 47(1):84-91. PubMed ID: 18078348 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]