BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 9649517)

  • 21. Effect of Salmonella assay negative and positive carcinogens on intrachromosomal recombination in S-phase arrested yeast cells.
    Galli A; Schiestl RH
    Mutat Res; 1998 Nov; 419(1-3):53-68. PubMed ID: 9804892
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1.
    Fishman-Lobell J; Haber JE
    Science; 1992 Oct; 258(5081):480-4. PubMed ID: 1411547
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events.
    Kramer KM; Brock JA; Bloom K; Moore JK; Haber JE
    Mol Cell Biol; 1994 Feb; 14(2):1293-301. PubMed ID: 8289808
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single strand and double strand DNA damage-induced reciprocal recombination in yeast. Dependence on nucleotide excision repair and RAD1 recombination.
    Saffran WA; Greenberg RB; Thaler-Scheer MS; Jones MM
    Nucleic Acids Res; 1994 Jul; 22(14):2823-9. PubMed ID: 8052537
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae.
    Moore JK; Haber JE
    Mol Cell Biol; 1996 May; 16(5):2164-73. PubMed ID: 8628283
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nonmutagenic carcinogens induce intrachromosomal recombination in dividing yeast cells.
    Schiestl RH
    Environ Health Perspect; 1993 Dec; 101 Suppl 5(Suppl 5):179-84. PubMed ID: 8013407
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Saccharomyces cerevisiae RAD53 (CHK2) but not CHK1 is required for double-strand break-initiated SCE and DNA damage-associated SCE after exposure to X rays and chemical agents.
    Fasullo M; Dong Z; Sun M; Zeng L
    DNA Repair (Amst); 2005 Nov; 4(11):1240-51. PubMed ID: 16039914
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of nonhomologous DNA end joining, conservative homologous recombination, and single-strand annealing in the cell cycle-dependent repair of DNA double-strand breaks induced by H(2)O(2) in mammalian cells.
    Frankenberg-Schwager M; Becker M; Garg I; Pralle E; Wolf H; Frankenberg D
    Radiat Res; 2008 Dec; 170(6):784-93. PubMed ID: 19138034
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distinct Cdk1 requirements during single-strand annealing, noncrossover, and crossover recombination.
    Trovesi C; Falcettoni M; Lucchini G; Clerici M; Longhese MP
    PLoS Genet; 2011 Aug; 7(8):e1002263. PubMed ID: 21901114
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Double-strand break-induced recombination in eukaryotes.
    Osman F; Subramani S
    Prog Nucleic Acid Res Mol Biol; 1998; 58():263-99. PubMed ID: 9308369
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-resolution mapping of spontaneous mitotic recombination hotspots on the 1.1 Mb arm of yeast chromosome IV.
    St Charles J; Petes TD
    PLoS Genet; 2013 Apr; 9(4):e1003434. PubMed ID: 23593029
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Homologous recombination protects mammalian cells from replication-associated DNA double-strand breaks arising in response to methyl methanesulfonate.
    Nikolova T; Ensminger M; Löbrich M; Kaina B
    DNA Repair (Amst); 2010 Oct; 9(10):1050-63. PubMed ID: 20708982
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae.
    Ivanov EL; Sugawara N; Fishman-Lobell J; Haber JE
    Genetics; 1996 Mar; 142(3):693-704. PubMed ID: 8849880
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sequence non-specific double-strand breaks and interhomolog interactions prior to double-strand break formation at a meiotic recombination hot spot in yeast.
    Xu L; Kleckner N
    EMBO J; 1995 Oct; 14(20):5115-28. PubMed ID: 7588640
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Double strand breaks at the HIS2 recombination hot spot in Saccharomyces cerevisiae.
    Bullard SA; Kim S; Galbraith AM; Malone RE
    Proc Natl Acad Sci U S A; 1996 Nov; 93(23):13054-9. PubMed ID: 8917543
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DNA damage-inducible and RAD52-independent repair of DNA double-strand breaks in Saccharomyces cerevisiae.
    Moore CW; McKoy J; Dardalhon M; Davermann D; Martinez M; Averbeck D
    Genetics; 2000 Mar; 154(3):1085-99. PubMed ID: 10757755
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Processing of DNA Double-Strand Breaks in Yeast.
    Gnügge R; Oh J; Symington LS
    Methods Enzymol; 2018; 600():1-24. PubMed ID: 29458754
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient repair of HO-induced chromosomal breaks in Saccharomyces cerevisiae by recombination between flanking homologous sequences.
    Rudin N; Haber JE
    Mol Cell Biol; 1988 Sep; 8(9):3918-28. PubMed ID: 3065627
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Mre11 nuclease is not required for 5' to 3' resection at multiple HO-induced double-strand breaks.
    Llorente B; Symington LS
    Mol Cell Biol; 2004 Nov; 24(21):9682-94. PubMed ID: 15485933
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wild-type levels of Spo11-induced DSBs are required for normal single-strand resection during meiosis.
    Neale MJ; Ramachandran M; Trelles-Sticken E; Scherthan H; Goldman AS
    Mol Cell; 2002 Apr; 9(4):835-46. PubMed ID: 11983174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.