These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 9649581)

  • 1. Patch clamp on the luminal membrane of exocrine gland acini from frog skin (Rana esculenta) reveals the presence of cystic fibrosis transmembrane conductance regulator-like Cl- channels activated by cyclic AMP.
    Sørensen JB; Larsen EH
    J Gen Physiol; 1998 Jul; 112(1):19-31. PubMed ID: 9649581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maxi K+ channels co-localised with CFTR in the apical membrane of an exocrine gland acinus: possible involvement in secretion.
    Sørensen JB; Nielsen MS; Gudme CN; Larsen EH; Nielsen R
    Pflugers Arch; 2001 Apr; 442(1):1-11. PubMed ID: 11374055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A small-conductance Cl- channel in the mouse thick ascending limb that is activated by ATP and protein kinase A.
    Guinamard R; Chraïbi A; Teulon J
    J Physiol; 1995 May; 485 ( Pt 1)(Pt 1):97-112. PubMed ID: 7658386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CFTR mediates electrogenic chloride secretion in mouse inner medullary collecting duct (mIMCD-K2) cells.
    Vandorpe D; Kizer N; Ciampollilo F; Moyer B; Karlson K; Guggino WB; Stanton BA
    Am J Physiol; 1995 Sep; 269(3 Pt 1):C683-9. PubMed ID: 7573398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CFTR-like chloride channels in non-ciliated bronchiolar epithelial (Clara) cells.
    Chinet TC; Gabriel SE; Penland CM; Sato M; Stutts MJ; Boucher RC; Van Scott MR
    Biochem Biophys Res Commun; 1997 Jan; 230(2):470-5. PubMed ID: 9016805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CFTR in Calu-3 human airway cells: channel properties and role in cAMP-activated Cl- conductance.
    Haws C; Finkbeiner WE; Widdicombe JH; Wine JJ
    Am J Physiol; 1994 May; 266(5 Pt 1):L502-12. PubMed ID: 7515579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clusters of Cl- channels in CFTR-expressing Sf9 cells switch spontaneously between slow and fast gating modes.
    Larsen EH; Price EM; Gabriel SE; Stutts MJ; Boucher RC
    Pflugers Arch; 1996 Jul; 432(3):528-37. PubMed ID: 8766014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a phosphorylation-activated Cl-selective channel in isolated Necturus enterocytes.
    Giraldez F; Murray KJ; Sepúlveda FV; Sheppard DN
    J Physiol; 1989 Sep; 416():517-37. PubMed ID: 2481731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. cAMP-activated anion conductance is associated with expression of CFTR in neonatal mouse cardiac myocytes.
    Lader AS; Wang Y; Jackson GR; Borkan SC; Cantiello HF
    Am J Physiol Cell Physiol; 2000 Feb; 278(2):C436-50. PubMed ID: 10666040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diverse modulations of chloride channels in renal proximal tubules.
    Darvish N; Winaver J; Dagan D
    Am J Physiol; 1994 Nov; 267(5 Pt 2):F716-24. PubMed ID: 7977776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. cAMP-activated apical membrane chloride channels in Necturus gallbladder epithelium. Conductance, selectivity, and block.
    Copello J; Heming TA; Segal Y; Reuss L
    J Gen Physiol; 1993 Aug; 102(2):177-99. PubMed ID: 8228907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation-regulated low-conductance Cl- channels in a human pancreatic duct cell line.
    Becq F; Hollande E; Gola M
    Pflugers Arch; 1993 Oct; 425(1-2):1-8. PubMed ID: 7505913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cystic fibrosis transmembrane conductance regulator (CFTR) confers glibenclamide sensitivity to outwardly rectifying chloride channel (ORCC) in Hi-5 insect cells.
    Julien M; Verrier B; Cerutti M; Chappe V; Gola M; Devauchelle G; Becq F
    J Membr Biol; 1999 Apr; 168(3):229-39. PubMed ID: 10191357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of large-conductance chloride channels in rabbit colonic smooth muscle.
    Sun XP; Supplisson S; Torres R; Sachs G; Mayer E
    J Physiol; 1992 Mar; 448():355-82. PubMed ID: 1375640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of two distinct chloride channels in cultured dog pancreatic duct epithelial cells.
    Nguyen TD; Koh DS; Moody MW; Fox NR; Savard CE; Kuver R; Hille B; Lee SP
    Am J Physiol; 1997 Jan; 272(1 Pt 1):G172-80. PubMed ID: 9038891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel chloride conductance activated by extracellular ATP in mouse parotid acinar cells.
    Arreola J; Melvin JE
    J Physiol; 2003 Feb; 547(Pt 1):197-208. PubMed ID: 12562938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of heterologously expressed cystic fibrosis transmembrane conductance regulator Cl- channels by non-sulphonylurea hypoglycaemic agents.
    Cai Z; Lansdell KA; Sheppard DN
    Br J Pharmacol; 1999 Sep; 128(1):108-18. PubMed ID: 10498841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane potential and conductance of frog skin gland acinar cells in resting conditions and during stimulation with agonists of macroscopic secretion.
    Sørensen JB; Larsen EH
    Pflugers Arch; 1999 Dec; 439(1-2):101-12. PubMed ID: 10651006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein kinase A-regulated Cl- channel in ML-1 human hematopoietic myeloblasts.
    Xu B; Lu L
    J Membr Biol; 1994 Oct; 142(1):65-75. PubMed ID: 7707354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of CFTR activated by the xanthine derivative X-33 in human airway Calu-3 cells.
    Bulteau L; Dérand R; Mettey Y; Métayé T; Morris MR; McNeilly CM; Folli C; Galietta LJ; Zegarra-Moran O; Pereira MM; Jougla C; Dormer RL; Vierfond JM; Joffre M; Becq F
    Am J Physiol Cell Physiol; 2000 Dec; 279(6):C1925-37. PubMed ID: 11078708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.