BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 9650087)

  • 1. Evidence for the participation of alpha B-crystallin in human age-related nuclear cataract.
    Truscott RJ; Chen YC; Shaw DC
    Int J Biol Macromol; 1998; 22(3-4):321-30. PubMed ID: 9650087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular evidence for the involvement of alpha crystallin in the colouration/crosslinking of crystallins in age-related nuclear cataract.
    Chen YC; Reid GE; Simpson RJ; Truscott RJ
    Exp Eye Res; 1997 Dec; 65(6):835-40. PubMed ID: 9441707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP
    Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Significance of interactions of low molecular weight crystallin fragments in lens aging and cataract formation.
    Santhoshkumar P; Udupa P; Murugesan R; Sharma KK
    J Biol Chem; 2008 Mar; 283(13):8477-85. PubMed ID: 18227073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct approach to identification, at the molecular level, of modified proteins in human nuclear cataractous lenses: beta-crystallin is a component of the urea-insoluble protein fraction.
    O'Hair RA; Sheil MM; Truscott RJ
    Ophthalmic Res; 1992; 24(5):303-7. PubMed ID: 1475078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregation of lens crystallins in an in vivo hyperbaric oxygen guinea pig model of nuclear cataract: dynamic light-scattering and HPLC analysis.
    Simpanya MF; Ansari RR; Suh KI; Leverenz VR; Giblin FJ
    Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4641-51. PubMed ID: 16303961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shotgun proteomic analysis of S-thiolation sites of guinea pig lens nuclear crystallins following oxidative stress in vivo.
    Giblin FJ; David LL; Wilmarth PA; Leverenz VR; Simpanya MF
    Mol Vis; 2013; 19():267-80. PubMed ID: 23401655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modifications of the water-insoluble human lens alpha-crystallins.
    Lund AL; Smith JB; Smith DL
    Exp Eye Res; 1996 Dec; 63(6):661-72. PubMed ID: 9068373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Asp 96 isomerization on the properties of a lens αB-crystallin-derived short peptide.
    Takata T; Fujii N
    J Pharm Biomed Anal; 2015 Dec; 116():139-44. PubMed ID: 26188790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alpha B- and βA3-crystallins containing d-aspartic acids exist in a monomeric state.
    Sakaue H; Takata T; Fujii N; Sasaki H; Fujii N
    Biochim Biophys Acta; 2015 Jan; 1854(1):1-9. PubMed ID: 25450505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localization of low molecular weight crystallin peptides in the aging human lens using a MALDI mass spectrometry imaging approach.
    Su SP; McArthur JD; Andrew Aquilina J
    Exp Eye Res; 2010 Jul; 91(1):97-103. PubMed ID: 20433829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K; Chaves JM; Srivastava OP; Kirk M
    Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective association of crystallins with lens 'native' membrane during dynamic cataractogenesis.
    Cenedella RJ; Fleschner CR
    Curr Eye Res; 1992 Aug; 11(8):801-15. PubMed ID: 1424724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence analysis of lens beta-crystallins suggests involvement of calpain in cataract formation.
    David LL; Shearer TR; Shih M
    J Biol Chem; 1993 Jan; 268(3):1937-40. PubMed ID: 8420967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-oxidative modification of lens crystallins by kynurenine: a novel post-translational protein modification with possible relevance to ageing and cataract.
    Garner B; Shaw DC; Lindner RA; Carver JA; Truscott RJ
    Biochim Biophys Acta; 2000 Feb; 1476(2):265-78. PubMed ID: 10669791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isomerization of aspartyl residues in crystallins and its influence upon cataract.
    Fujii N; Takata T; Fujii N; Aki K
    Biochim Biophys Acta; 2016 Jan; 1860(1 Pt B):183-91. PubMed ID: 26275494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic analysis of the oxidation of cysteine residues in human age-related nuclear cataract lenses.
    Hains PG; Truscott RJ
    Biochim Biophys Acta; 2008 Dec; 1784(12):1959-64. PubMed ID: 18761110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variation in proportion and molecular weight of native crystallins from single human lenses upon aging and formation of nuclear cataract.
    Bessems GJ; Hoenders HJ; Wollensak J
    Exp Eye Res; 1983 Dec; 37(6):627-37. PubMed ID: 6662209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deamidation in human gamma S-crystallin from cataractous lenses is influenced by surface exposure.
    Lapko VN; Purkiss AG; Smith DL; Smith JB
    Biochemistry; 2002 Jul; 41(27):8638-48. PubMed ID: 12093281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.