These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 9650187)
1. Evaluation of imaging geometries calculated from biplane images. Esthappan J; Harauchi H; Hoffmann KR Med Phys; 1998 Jun; 25(6):965-75. PubMed ID: 9650187 [TBL] [Abstract][Full Text] [Related]
2. Improved determination of biplane imaging geometry from two projection images and its application to three-dimensional reconstruction of coronary arterial trees. Chen SY; Metz CE Med Phys; 1997 May; 24(5):633-54. PubMed ID: 9167155 [TBL] [Abstract][Full Text] [Related]
3. Determination of 3D positions of pacemaker leads from biplane angiographic sequences. Hoffmann KR; Williams BB; Esthappan J; Chen SY; Carroll JD; Harauchi H; Doerr V; Kay GN; Eberhardt A; Overland M Med Phys; 1997 Dec; 24(12):1854-62. PubMed ID: 9434968 [TBL] [Abstract][Full Text] [Related]
4. Determination of 3D imaging geometry and object configurations from two biplane views: an enhancement of the Metz-Fencil technique. Hoffmann KR; Metz CE; Chen Y Med Phys; 1995 Aug; 22(8):1219-27. PubMed ID: 7476707 [TBL] [Abstract][Full Text] [Related]
5. Optimization of three-dimensional angiographic data obtained by self-calibration of multiview imaging. Noël PB; Hoffmann KR; Kasodekar S; Walczak AM; Schafer S Med Phys; 2006 Oct; 33(10):3901-11. PubMed ID: 17089852 [TBL] [Abstract][Full Text] [Related]
6. Effects of point configuration on the accuracy in 3D reconstruction from biplane images. Dmochowski J; Hoffmann KR; Singh V; Xu J; Nazareth DP Med Phys; 2005 Sep; 32(9):2862-9. PubMed ID: 16266100 [TBL] [Abstract][Full Text] [Related]
7. A system for determination of 3D vessel tree centerlines from biplane images. Hoffmann KR; Sen A; Lan L; Chua KG; Esthappan J; Mazzucco M Int J Card Imaging; 2000 Oct; 16(5):315-30. PubMed ID: 11215917 [TBL] [Abstract][Full Text] [Related]
8. Propagation and reduction of error in three-dimensional structure determined from biplane views of unknown orientation. Fencil LE; Metz CE Med Phys; 1990; 17(6):951-61. PubMed ID: 2280738 [TBL] [Abstract][Full Text] [Related]
9. Automatic correction of biplane projection imaging geometry. Close R; Morioka C; Whiting JS Med Phys; 1996 Jan; 23(1):133-9. PubMed ID: 8700024 [TBL] [Abstract][Full Text] [Related]
10. Towards a theory of a solution space for the biplane imaging geometry problem. Singh V; Xu J; Hoffmann KR; Xu G; Chen Z; Gopal A Med Phys; 2006 Oct; 33(10):3647-65. PubMed ID: 17089831 [TBL] [Abstract][Full Text] [Related]
11. A method for more efficient source localization of interstitial implants with biplane radiographs. Cai J; Chu JC; Saxena VA; Lanzl LH Med Phys; 1997 Aug; 24(8):1229-34. PubMed ID: 9284244 [TBL] [Abstract][Full Text] [Related]
12. Determination of three-dimensional positions of known sparse objects from a single projection. Hoffmann KR; Esthappan J Med Phys; 1997 Apr; 24(4):555-64. PubMed ID: 9127308 [TBL] [Abstract][Full Text] [Related]
13. An interpolation technique to enable accurate three-dimensional joint kinematic analyses using asynchronous biplane fluoroscopy. Akbari-Shandiz M; Mozingo JD; Holmes Iii DR; Zhao KD Med Eng Phys; 2018 Oct; 60():109-116. PubMed ID: 30098937 [TBL] [Abstract][Full Text] [Related]
14. Sensitivity analysis of a geometric calibration method using projection matrices for digital tomosynthesis systems. Li X; Da Z; Liu B Med Phys; 2011 Jan; 38(1):202-9. PubMed ID: 21361188 [TBL] [Abstract][Full Text] [Related]
15. Computer analysis of mammography phantom images (CAMPI): an application to the measurement of microcalcification image quality of directly acquired digital images. Chakraborty DP Med Phys; 1997 Aug; 24(8):1269-77. PubMed ID: 9284251 [TBL] [Abstract][Full Text] [Related]
16. Stereomammography: evaluation of depth perception using a virtual 3D cursor. Goodsitt MM; Chan HP; Hadjiiski L Med Phys; 2000 Jun; 27(6):1305-10. PubMed ID: 10902560 [TBL] [Abstract][Full Text] [Related]
17. Respiration-phase-matched digital tomosynthesis imaging for moving target verification: a feasibility study. Zhang Y; Ren L; Ling CC; Yin FF Med Phys; 2013 Jul; 40(7):071723. PubMed ID: 23822427 [TBL] [Abstract][Full Text] [Related]
18. Determination of x-ray tube focal spot position. Kubota H; Ozaki Y; Matsumoto M; Kanamori H Med Phys; 1993; 20(4):1029-31. PubMed ID: 8413010 [TBL] [Abstract][Full Text] [Related]
19. Sensitivity of CIPS-computed PVC location to measurement errors in ECG electrode position: the need for the 3D camera. van Dam PM; Gordon JP; Laks M J Electrocardiol; 2014; 47(6):788-93. PubMed ID: 25194874 [TBL] [Abstract][Full Text] [Related]
20. Automatic marker detection and 3D position reconstruction using cine EPID images for SBRT verification. Park SJ; Ionascu D; Hacker F; Mamon H; Berbeco R Med Phys; 2009 Oct; 36(10):4536-46. PubMed ID: 19928085 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]