These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 9650258)

  • 1. The diversion of lactose carbon through the tagatose pathway reduces the intracellular fructose 1,6-bisphosphate and growth rate of Streptococcus bovis.
    Bond DR; Tsai BM; Russell JB
    Appl Microbiol Biotechnol; 1998 May; 49(5):600-5. PubMed ID: 9650258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between intracellular phosphate, proton motive force, and rate of nongrowth energy dissipation (energy spilling) in Streptococcus bovis JB1.
    Bond DR; Russell JB
    Appl Environ Microbiol; 1998 Mar; 64(3):976-81. PubMed ID: 9501437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catabolite regulation in a diauxic strain and a nondiauxic strain of Streptococcus bovis.
    Kearns DB; Russell JB
    Curr Microbiol; 1996 Oct; 33(4):216-9. PubMed ID: 8824165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Galactose Expulsion during Lactose Metabolism in Lactococcus lactis subsp. cremoris FD1 Due to Dephosphorylation of Intracellular Galactose 6-Phosphate.
    Benthin S; Nielsen J; Villadsen J
    Appl Environ Microbiol; 1994 Apr; 60(4):1254-9. PubMed ID: 16349233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus.
    Solem C; Koebmann B; Jensen PR
    Biotechnol Appl Biochem; 2008 May; 50(Pt 1):35-40. PubMed ID: 17822381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Replacement of isoleucine-47 by threonine in the HPr protein of Streptococcus salivarius abrogates the preferential metabolism of glucose and fructose over lactose and melibiose but does not prevent the phosphorylation of HPr on serine-46.
    Gauthier M; Brochu D; Eltis LD; Thomas S; Vadeboncoeur C
    Mol Microbiol; 1997 Aug; 25(4):695-705. PubMed ID: 9379899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Glucose and Starch on Lactate Production by Newly Isolated Streptococcus bovis S1 from Saanen Goats.
    Chen L; Luo Y; Wang H; Liu S; Shen Y; Wang M
    Appl Environ Microbiol; 2016 Oct; 82(19):5982-9. PubMed ID: 27474714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inducer expulsion is not a determinant of diauxic growth in Streptococcus bovis.
    Kearns DB; Cook GM; Russell JB
    Curr Microbiol; 1996 Apr; 32(4):221-4. PubMed ID: 8867462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioenergetic consequences of lactose starvation for continuously cultured Streptococcus cremoris.
    Poolman B; Smid EJ; Veldkamp H; Konings WN
    J Bacteriol; 1987 Apr; 169(4):1460-8. PubMed ID: 3558320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection of Galactose-Fermenting Streptococcus thermophilus in Lactose-Limited Chemostat Cultures.
    Thomas TD; Crow VL
    Appl Environ Microbiol; 1984 Jul; 48(1):186-91. PubMed ID: 16346586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Galactose fermentation by Streptococcus lactis and Streptococcus cremoris: pathways, products, and regulation.
    Thomas TD; Turner KW; Crow VL
    J Bacteriol; 1980 Nov; 144(2):672-82. PubMed ID: 6776093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics and metabolism of Bifidobacterium adolescentis MB 239 growing on glucose, galactose, lactose, and galactooligosaccharides.
    Amaretti A; Bernardi T; Tamburini E; Zanoni S; Lomma M; Matteuzzi D; Rossi M
    Appl Environ Microbiol; 2007 Jun; 73(11):3637-44. PubMed ID: 17434997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose.
    Gonzalez R; Tao H; Shanmugam KT; York SW; Ingram LO
    Biotechnol Prog; 2002; 18(1):6-20. PubMed ID: 11822894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterofermentative carbohydrate metabolism of lactose-impaired mutants of Streptococcus lactis.
    Demko GM; Blanton SJ; Benoit RE
    J Bacteriol; 1972 Dec; 112(3):1335-45. PubMed ID: 4629656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Galactose metabolism by Streptococcus mutans.
    Abranches J; Chen YY; Burne RA
    Appl Environ Microbiol; 2004 Oct; 70(10):6047-52. PubMed ID: 15466549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning of a second gene encoding 5-phosphofructo-2-kinase in yeast, and characterization of mutant strains without fructose-2,6-bisphosphate.
    Boles E; Göhlmann HW; Zimmermann FK
    Mol Microbiol; 1996 Apr; 20(1):65-76. PubMed ID: 8861205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative studies on the glycolytic and hexose monophosphate pathways in Candida parapsilosis and Saccharomyces cerevisiae.
    Caubet R; Guerin B; Guerin M
    Arch Microbiol; 1988; 149(4):324-9. PubMed ID: 2833196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial competition between a bacteriocin-producing and a bacteriocin-negative strain of Streptococcus bovis in batch and continuous culture.
    Xavier BM; Russell JB
    FEMS Microbiol Ecol; 2006 Dec; 58(3):317-22. PubMed ID: 17117976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of adenosine on fructose 2,6-bisphosphate levels and glucose metabolization by chicken erythrocytes.
    Espinet C; Bartrons R; Carreras J
    FEBS Lett; 1989 Nov; 258(1):143-6. PubMed ID: 2591530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of sugar utilization in the oral bacteria Streptococcus salivarius and Streptococcus sanguis by the phosphoenolpyruvate: glucose phosphotransferase system.
    Vadeboncoeur C; Bourgeau G; Mayrand D; Trahan L
    Arch Oral Biol; 1983; 28(2):123-31. PubMed ID: 6575744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.