These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 9650258)

  • 21. Comparative effect of salinomycin and monensin on Streptococcus bovis strain ATCC 9809.
    Leblanc D; Morin A; Daigneault J
    Microbios; 1993; 76(306):41-5. PubMed ID: 8264432
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of laidlomycin propionate and monensin on glucose utilization and nutrient transport by Streptococcus bovis and Selenomonas ruminantium.
    Wampler JL; Martin SA; Hill GM
    J Anim Sci; 1998 Oct; 76(10):2730-6. PubMed ID: 9814916
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of pH on the heat production and membrane resistance of Streptococcus bovis.
    Russell JB
    Arch Microbiol; 1992; 158(1):54-8. PubMed ID: 1444715
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bovicin HC5, a lantibiotic produced by Streptococcus bovis HC5, catalyzes the efflux of intracellular potassium but not ATP.
    Mantovani HC; Russell JB
    Antimicrob Agents Chemother; 2008 Jun; 52(6):2247-9. PubMed ID: 18347110
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of amino acids on the heat production and growth efficiency of Streptococcus bovis: balance of anabolic and catabolic rates.
    Russell JB
    Appl Environ Microbiol; 1993 Jun; 59(6):1747-51. PubMed ID: 8328799
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The ability of 2-deoxyglucose to promote the lysis of Streptococcus bovis JB1 via a mechanism involving cell wall stability.
    Russell JB; Wells JE
    Curr Microbiol; 1997 Nov; 35(5):299-304. PubMed ID: 9462960
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic imbalance in a Saccharomyces cerevisiae mutant unable to grow on fermentable hexoses.
    Alonso A; Pascual C; Herrera L; Gancedo JM; Gancedo C
    Eur J Biochem; 1984 Jan; 138(2):407-11. PubMed ID: 6365545
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Compartmentation of glucose and fructose 1,6-bisphosphate metabolism in vascular smooth muscle.
    Hardin CD; Roberts TM
    Biochemistry; 1995 Jan; 34(4):1323-31. PubMed ID: 7827080
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of lactose fermentation in group N streptococci.
    Thomas TD
    Appl Environ Microbiol; 1976 Oct; 32(4):474-8. PubMed ID: 16345174
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of carbon and nitrogen sources on bovicin HC5 production by Streptococcus bovis HC5.
    De Carvalho AA; Mantovani HC; Paiva AD; De Melo MR
    J Appl Microbiol; 2009 Jul; 107(1):339-47. PubMed ID: 19320950
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heterofermentative glucose metabolism by glucose transport-impaired mutants of oral streptococcal bacteria during growth in batch culture.
    Vadeboncoeur C; Trahan L
    Arch Oral Biol; 1983; 28(10):931-7. PubMed ID: 6580849
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of growth conditions on the Streptococcus bovis phosphoenolpyruvate glucose phosphotransferase system.
    Moore GA; Martin SA
    J Anim Sci; 1991 Dec; 69(12):4967-73. PubMed ID: 1808190
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of ATP-dependent P-(Ser)-HPr formation in Streptococcus mutans and Streptococcus salivarius.
    Thevenot T; Brochu D; Vadeboncoeur C; Hamilton IR
    J Bacteriol; 1995 May; 177(10):2751-9. PubMed ID: 7751285
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancing the Sweetness of Yoghurt through Metabolic Remodeling of Carbohydrate Metabolism in Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus.
    Sørensen KI; Curic-Bawden M; Junge MP; Janzen T; Johansen E
    Appl Environ Microbiol; 2016 Jun; 82(12):3683-3692. PubMed ID: 27107115
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolism of exogenously applied fructose 1,6-bisphosphate in hypoxic vascular smooth muscle.
    Hardin CD; Roberts TM
    Am J Physiol; 1994 Dec; 267(6 Pt 2):H2325-32. PubMed ID: 7810732
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of various metabolic conditions and of the trivalent arsenical melarsen oxide on the intracellular levels of fructose 2,6-bisphosphate and of glycolytic intermediates in Trypanosoma brucei.
    Van Schaftingen E; Opperdoes FR; Hers HG
    Eur J Biochem; 1987 Aug; 166(3):653-61. PubMed ID: 3038548
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Factors affecting the antibacterial activity of the ruminal bacterium, Streptococcus bovis HC5.
    Mantovani HC; Russell JB
    Curr Microbiol; 2003 Jan; 46(1):18-23. PubMed ID: 12432458
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A re-assessment of bacterial growth efficiency: the heat production and membrane potential of Streptococcus bovis in batch and continuous culture.
    Russell JB
    Arch Microbiol; 1991; 155(6):559-65. PubMed ID: 1953297
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two Uptake Systems for Fructose in Lactococcus lactis subsp. cremoris FD1 Produce Glycolytic and Gluconeogenic Fructose Phosphates and Induce Oscillations in Growth and Lactic Acid Formation.
    Benthin S; Nielsen J; Villadsen J
    Appl Environ Microbiol; 1993 Oct; 59(10):3206-11. PubMed ID: 16349061
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.