These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 9650296)
1. Differential involvement of indole-3-acetic acid biosynthetic pathways in pathogenicity and epiphytic fitness of Erwinia herbicola pv. gypsophilae. Manulis S; Haviv-Chesner A; Brandl MT; Lindow SE; Barash I Mol Plant Microbe Interact; 1998 Jul; 11(7):634-42. PubMed ID: 9650296 [TBL] [Abstract][Full Text] [Related]
2. The presence of hrp genes on the pathogenicity-associated plasmid of the tumorigenic bacterium Erwinia herbicola pv. gypsophilae. Nizan R; Barash I; Valinsky L; Lichter A; Manulis S Mol Plant Microbe Interact; 1997 Jul; 10(5):677-82. PubMed ID: 9204571 [TBL] [Abstract][Full Text] [Related]
3. Regulatory interactions between quorum-sensing, auxin, cytokinin, and the Hrp regulon in relation to gall formation and epiphytic fitness of Pantoea agglomerans pv. gypsophilae. Chalupowicz L; Barash I; Panijel M; Sessa G; Manulis-Sasson S Mol Plant Microbe Interact; 2009 Jul; 22(7):849-56. PubMed ID: 19522567 [TBL] [Abstract][Full Text] [Related]
4. The dual function in virulence and host range restriction of a gene isolated from the pPATH (Ehg) plasmid of Erwinia herbicola pv. gypsophilae. Ezra D; Barash I; Valinsky L; Manulis S Mol Plant Microbe Interact; 2000 Jun; 13(6):683-92. PubMed ID: 10830268 [TBL] [Abstract][Full Text] [Related]
5. The presence of diverse IS elements and an avrPphD homologue that acts as a virulence factor on the pathogenicity plasmid of Erwinia herbicola pv. gypsophilae. Guo M; Manulis S; Mor H; Barash I Mol Plant Microbe Interact; 2002 Jul; 15(7):709-16. PubMed ID: 12118887 [TBL] [Abstract][Full Text] [Related]
6. The genes involved in cytokinin biosynthesis in Erwinia herbicola pv. gypsophilae: characterization and role in gall formation. Lichter A; Barash I; Valinsky L; Manulis S J Bacteriol; 1995 Aug; 177(15):4457-65. PubMed ID: 7635829 [TBL] [Abstract][Full Text] [Related]
7. The operon for cytokinin biosynthesis of Erwinia herbicola pv. gypsophilae contains two promoters and is plant induced. Guo M; Manulis S; Barash I; Lichter A Can J Microbiol; 2001 Dec; 47(12):1126-31. PubMed ID: 11822839 [TBL] [Abstract][Full Text] [Related]
8. Genetic organization of the hrp gene cluster and dspAE/BF operon in Erwinia herbicola pv. gypsophilae. Mor H; Manulis S; Zuck M; Nizan R; Coplin DL; Barash I Mol Plant Microbe Interact; 2001 Mar; 14(3):431-6. PubMed ID: 11277443 [TBL] [Abstract][Full Text] [Related]
9. Identification and functional characterization of indole-3-acetamide-mediated IAA biosynthesis in plant-associated Fusarium species. Tsavkelova E; Oeser B; Oren-Young L; Israeli M; Sasson Y; Tudzynski B; Sharon A Fungal Genet Biol; 2012 Jan; 49(1):48-57. PubMed ID: 22079545 [TBL] [Abstract][Full Text] [Related]
10. IS1327, a new insertion-like element in the pathogenicity-associated plasmid of Erwinia herbicola pv. gypsophilae. Lichter A; Manulis S; Valinsky L; Karniol B; Barash I Mol Plant Microbe Interact; 1996 Mar; 9(2):98-104. PubMed ID: 8820751 [TBL] [Abstract][Full Text] [Related]
11. The regulatory cascade that activates the Hrp regulon in Erwinia herbicola pv. gypsophilae. Nizan-Koren R; Manulis S; Mor H; Iraki NM; Barash I Mol Plant Microbe Interact; 2003 Mar; 16(3):249-60. PubMed ID: 12650456 [TBL] [Abstract][Full Text] [Related]
12. Molecular characterization of global regulatory RNA species that control pathogenicity factors in Erwinia amylovora and Erwinia herbicola pv. gypsophilae. Ma W; Cui Y; Liu Y; Dumenyo CK; Mukherjee A; Chatterjee AK J Bacteriol; 2001 Mar; 183(6):1870-80. PubMed ID: 11222584 [TBL] [Abstract][Full Text] [Related]
13. A pathogenicity gene isolated from the pPATH plasmid of Erwinia herbicola pv. gypsophilae determines host specificity. Valinsky L; Manulis S; Nizan R; Ezra D; Barash I Mol Plant Microbe Interact; 1998 Aug; 11(8):753-62. PubMed ID: 9675891 [TBL] [Abstract][Full Text] [Related]
15. Targeted engineering of Azospirillum brasilense SM with indole acetamide pathway for indoleacetic acid over-expression. Malhotra M; Srivastava S Can J Microbiol; 2006 Nov; 52(11):1078-84. PubMed ID: 17215899 [TBL] [Abstract][Full Text] [Related]
16. The pathway of auxin biosynthesis in plants. Mano Y; Nemoto K J Exp Bot; 2012 May; 63(8):2853-72. PubMed ID: 22447967 [TBL] [Abstract][Full Text] [Related]
17. Organization of the ipdC region regulates IAA levels in different Azospirillum brasilense strains: molecular and functional analysis of ipdC in strain SM. Malhotra M; Srivastava S Environ Microbiol; 2008 May; 10(5):1365-73. PubMed ID: 18248455 [TBL] [Abstract][Full Text] [Related]
18. Indole-3-acetic acid biosynthesis in the biocontrol strain Pseudomonas fluorescens Psd and plant growth regulation by hormone overexpression. Kochar M; Upadhyay A; Srivastava S Res Microbiol; 2011 May; 162(4):426-35. PubMed ID: 21397014 [TBL] [Abstract][Full Text] [Related]
19. Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indole-3-acetic acid synthesis in Erwinia herbicola. Brandl MT; Lindow SE Appl Environ Microbiol; 1996 Nov; 62(11):4121-8. PubMed ID: 8900003 [TBL] [Abstract][Full Text] [Related]
20. Characterization of high-frequency deletions in the iaa-containing plasmid, pIAA2, of Pseudomonas syringae pv. savastanoi. Soby S; Kirkpatrick B; Kosuge T Plasmid; 1994 Jan; 31(1):21-30. PubMed ID: 7909615 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]