These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 9650297)

  • 41. Bayesian inference to study genetic control of resistance to gray leaf spot in maize.
    Balestre M; Von Pinho RG; Brito AH
    Genet Mol Res; 2012 Jan; 11(1):17-29. PubMed ID: 22290462
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Burkholderia endophyte of the ancient maize landrace Chapalote utilizes c-di-GMP-dependent and independent signaling to suppress diverse plant fungal pathogen targets.
    Shehata HR; Raizada MN
    FEMS Microbiol Lett; 2017 Aug; 364(14):. PubMed ID: 28679171
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Systemic acquired resistance delays race shifts to major resistance genes in bell pepper.
    Romero AM; Ritchie DF
    Phytopathology; 2004 Dec; 94(12):1376-82. PubMed ID: 18943709
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A maize polygalacturonase functions as a suppressor of programmed cell death in plants.
    He Y; Karre S; Johal GS; Christensen SA; Balint-Kurti P
    BMC Plant Biol; 2019 Jul; 19(1):310. PubMed ID: 31307401
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The maize pathogenesis-related PRms protein localizes to plasmodesmata in maize radicles.
    Murillo I; Cavallarin L; San Segundo B
    Plant Cell; 1997 Feb; 9(2):145-56. PubMed ID: 9061947
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pathological & histopathological studies of brown stripe downy mildew of maize.
    Singh JP
    Indian J Exp Biol; 1971 Oct; 9(4):493-5. PubMed ID: 5147176
    [No Abstract]   [Full Text] [Related]  

  • 47. Coordinate Gene Activity in Response to Agents That Induce Systemic Acquired Resistance.
    Ward ER; Uknes SJ; Williams SC; Dincher SS; Wiederhold DL; Alexander DC; Ahl-Goy P; Metraux JP; Ryals JA
    Plant Cell; 1991 Oct; 3(10):1085-1094. PubMed ID: 12324583
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Lupinus albus L. pathogenesis-related proteins that show similarity to PR-10 proteins.
    Pinto MP; Ricardo CP
    Plant Physiol; 1995 Dec; 109(4):1345-51. PubMed ID: 8539294
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Systemic Acquired Resistance Mediated by the Ectopic Expression of Invertase: Possible Hexose Sensing in the Secretory Pathway.
    Herbers K; Meuwly P; Frommer WB; Metraux JP; Sonnewald U
    Plant Cell; 1996 May; 8(5):793-803. PubMed ID: 12239401
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Host-parasite interactions: elicitation of defense responses in plants with chitosan.
    Hadwiger LA
    EXS; 1999; 87():185-200. PubMed ID: 10906960
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Prohibitins, stomatins, and plant disease response genes compose a protein superfamily that controls cell proliferation, ion channel regulation, and death.
    Nadimpalli R; Yalpani N; Johal GS; Simmons CR
    J Biol Chem; 2000 Sep; 275(38):29579-86. PubMed ID: 10862763
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Systemic acquired resistance.
    Sticher L; Mauch-Mani B; Métraux JP
    Annu Rev Phytopathol; 1997; 35():235-70. PubMed ID: 15012523
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ribosome-inactivating proteins from plants.
    Barbieri L; Battelli MG; Stirpe F
    Biochim Biophys Acta; 1993 Dec; 1154(3-4):237-82. PubMed ID: 8280743
    [No Abstract]   [Full Text] [Related]  

  • 54. [Theories of the mechanism of the plant resistance to infections diseases].
    Grzelińska A
    Postepy Biochem; 1973; 19(1):141-58. PubMed ID: 4697969
    [No Abstract]   [Full Text] [Related]  

  • 55. Overexpression of ZmSPL12 confers enhanced lodging resistance through transcriptional regulation of D1 in maize.
    Zhao B; Xu M; Zhao Y; Li Y; Xu H; Li C; Kong D; Xie Y; Zheng Z; Wang B; Wang H
    Plant Biotechnol J; 2022 Apr; 20(4):622-624. PubMed ID: 35150020
    [No Abstract]   [Full Text] [Related]  

  • 56. Disease Resistance and Early Testing of Maize.
    Wernham CC
    Science; 1952 Jul; 116(3003):57-8. PubMed ID: 17813332
    [No Abstract]   [Full Text] [Related]  

  • 57. The Location of a Gene for Disease Resistance in Maize.
    Rhoades VH
    Proc Natl Acad Sci U S A; 1935 May; 21(5):243-6. PubMed ID: 16577663
    [No Abstract]   [Full Text] [Related]  

  • 58. Use of the Puccinia sorghi haustorial transcriptome to identify and characterize AvrRp1-D recognized by the maize Rp1-D resistance protein.
    Kim SB; Kim KT; In S; Jaiswal N; Lee GW; Jung S; Rogers A; Gómez-Trejo LF; Gautam S; Helm M; Ahn HK; Lee HY; Read QD; Woo J; Holan KL; Whitham SA; Jones JDG; Choi D; Dean R; Park E; Balint-Kurti P
    PLoS Pathog; 2024 Nov; 20(11):e1012662. PubMed ID: 39514589
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Physiological Effects of Microbial Biocontrol Agents in the Maize Phyllosphere.
    Vanacore MFG; Sartori M; Giordanino F; Barros G; Nesci A; García D
    Plants (Basel); 2023 Dec; 12(24):. PubMed ID: 38140407
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Disruption of the Novel Small Protein RBR7 Leads to Enhanced Plant Resistance to Blast Disease.
    Shi H; Xiong Q; Zhao Z; Zhou L; Yin J; Lu X; Chen X; Wang J
    Rice (N Y); 2023 Sep; 16(1):42. PubMed ID: 37733139
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.