These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 9650605)
1. The linear-quadratic model and most other common radiobiological models result in similar predictions of time-dose relationships. Brenner DJ; Hlatky LR; Hahnfeldt PJ; Huang Y; Sachs RK Radiat Res; 1998 Jul; 150(1):83-91. PubMed ID: 9650605 [TBL] [Abstract][Full Text] [Related]
2. Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy. Park C; Papiez L; Zhang S; Story M; Timmerman RD Int J Radiat Oncol Biol Phys; 2008 Mar; 70(3):847-52. PubMed ID: 18262098 [TBL] [Abstract][Full Text] [Related]
3. The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction. Brenner DJ Semin Radiat Oncol; 2008 Oct; 18(4):234-9. PubMed ID: 18725109 [TBL] [Abstract][Full Text] [Related]
4. The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Kirkpatrick JP; Meyer JJ; Marks LB Semin Radiat Oncol; 2008 Oct; 18(4):240-3. PubMed ID: 18725110 [TBL] [Abstract][Full Text] [Related]
5. A LQ-based kinetic model formulation for exploring dynamics of treatment response of tumours in patients. Scheidegger S; Lutters G; Bodis S Z Med Phys; 2011 Sep; 21(3):164-73. PubMed ID: 21237624 [TBL] [Abstract][Full Text] [Related]
6. A generalized linear-quadratic model for radiosurgery, stereotactic body radiation therapy, and high-dose rate brachytherapy. Wang JZ; Huang Z; Lo SS; Yuh WT; Mayr NA Sci Transl Med; 2010 Jul; 2(39):39ra48. PubMed ID: 20610850 [TBL] [Abstract][Full Text] [Related]
7. Isotope selection for permanent prostate implants? An evaluation of 103Pd versus 125I based on radiobiological effectiveness and dosimetry. Dicker AP; Lin CC; Leeper DB; Waterman FM Semin Urol Oncol; 2000 May; 18(2):152-9. PubMed ID: 10875458 [TBL] [Abstract][Full Text] [Related]
8. The minimal FLASH sparing effect needed to compensate the increase of radiobiological damage due to hypofractionation for late-reacting tissues. Böhlen TT; Germond JF; Bourhis J; Bailat C; Bochud F; Moeckli R Med Phys; 2022 Dec; 49(12):7672-7682. PubMed ID: 35933554 [TBL] [Abstract][Full Text] [Related]
9. Radiobiological modelling of dose-gradient effects in low dose rate, high dose rate and pulsed brachytherapy. Armpilia C; Dale RG; Sandilos P; Vlachos L Phys Med Biol; 2006 Sep; 51(17):4399-411. PubMed ID: 16912389 [TBL] [Abstract][Full Text] [Related]
10. Calculated and simulated effects of heterogeneous dose distributions in radiotherapy using the dose volume inhomogeneity corrected biological equivalent dose formula with special reference to prostate cancer. Lennernäs B; Albertsson P; Edgren M; Nilsson S Oncol Rep; 2007 Nov; 18(5):1299-303. PubMed ID: 17914588 [TBL] [Abstract][Full Text] [Related]
11. Effect of patient variation on standard- and hypo-fractionated radiotherapy of prostate cancer. Xiong W; Li J; Ma CM Phys Med Biol; 2005 Apr; 50(7):1483-92. PubMed ID: 15798338 [TBL] [Abstract][Full Text] [Related]
12. LDR vs. HDR brachytherapy for localized prostate cancer: the view from radiobiological models. King CR Brachytherapy; 2002; 1(4):219-26. PubMed ID: 15062170 [TBL] [Abstract][Full Text] [Related]
13. Impact of tumor repopulation on radiotherapy planning. Wang JZ; Li XA Int J Radiat Oncol Biol Phys; 2005 Jan; 61(1):220-7. PubMed ID: 15629615 [TBL] [Abstract][Full Text] [Related]
14. Measurements of characteristics of time pattern in dose delivery in step-and-shoot IMRT. Schäfer M; Münter M; Sterzing F; Häring P; Rhein B; Debus J Strahlenther Onkol; 2005 Sep; 181(9):587-94. PubMed ID: 16170486 [TBL] [Abstract][Full Text] [Related]
15. Convex reformulation of biologically-based multi-criteria intensity-modulated radiation therapy optimization including fractionation effects. Hoffmann AL; den Hertog D; Siem AY; Kaanders JH; Huizenga H Phys Med Biol; 2008 Nov; 53(22):6345-62. PubMed ID: 18941280 [TBL] [Abstract][Full Text] [Related]
16. A radiobiological model for the relative biological effectiveness of high-dose-rate 252Cf brachytherapy. Rivard MJ; Melhus CS; Zinkin HD; Stapleford LJ; Evans KE; Wazer DE; Odlozilíková A Radiat Res; 2005 Sep; 164(3):319-23. PubMed ID: 16137205 [TBL] [Abstract][Full Text] [Related]
17. Compensation for changes in dose-rate in radical low-dose-rate brachytherapy: a radiobiological analysis of a randomised clinical trial. Roberts SA; Hendry JH; Swindell R; Wilkinson JM; Hunter RD Radiother Oncol; 2004 Jan; 70(1):63-74. PubMed ID: 15036854 [TBL] [Abstract][Full Text] [Related]
18. A comparative analysis of radiobiological models for cell surviving fractions at high doses. Andisheh B; Edgren M; Belkić D; Mavroidis P; Brahme A; Lind BK Technol Cancer Res Treat; 2013 Apr; 12(2):183-92. PubMed ID: 23098282 [TBL] [Abstract][Full Text] [Related]
19. Equivalence of the linear-quadratic and two-lesion kinetic models. Guerrero M; Stewart RD; Wang JZ; Li XA Phys Med Biol; 2002 Sep; 47(17):3197-209. PubMed ID: 12361218 [TBL] [Abstract][Full Text] [Related]
20. Comparison of (125)I stereotactic brachytherapy and LINAC radiosurgery modalities based on physical dose distribution and radiobiological efficacy. Viola A; Major T; Julow J Radiat Res; 2006 Jun; 165(6):695-702. PubMed ID: 16802870 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]