These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 9651007)

  • 41. Convergence and divergence in the afferent projections to cat area 17.
    Salin PA; Bullier J; Kennedy H
    J Comp Neurol; 1989 May; 283(4):486-512. PubMed ID: 2745751
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The laminar distribution of cortical connections with the tecto- and cortico-recipient zones in the cat's lateral posterior nucleus.
    Abramson BP; Chalupa LM
    Neuroscience; 1985 May; 15(1):81-95. PubMed ID: 4010937
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development of the projections from the dorsal lateral geniculate nucleus to the lateral suprasylvian visual area of cortex in the cat.
    Tong LL; Kalil RE; Spear PD
    J Comp Neurol; 1991 Dec; 314(3):526-33. PubMed ID: 1726109
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Segregation of callosal and association pathways during development in the visual cortex of the primate.
    Meissirel C; Dehay C; Berland M; Kennedy H
    J Neurosci; 1991 Nov; 11(11):3297-316. PubMed ID: 1658248
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Anatomical organization of the visual system of the mink, Mustela vison.
    McConnell SK; LeVay S
    J Comp Neurol; 1986 Aug; 250(1):109-32. PubMed ID: 3016036
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Callosally projecting neurons in the macaque monkey V1/V2 border are enriched in nonphosphorylated neurofilament protein.
    Hof PR; Ungerleider LG; Adams MM; Webster MJ; Gattass R; Blumberg DM; Morrison JH
    Vis Neurosci; 1997; 14(5):981-7. PubMed ID: 9364733
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Topographic organization of cortical input to striate cortex in the Cebus monkey: a fluorescent tracer study.
    Sousa AP; PiƱon MC; Gattass R; Rosa MG
    J Comp Neurol; 1991 Jun; 308(4):665-82. PubMed ID: 1865021
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The lateral suprasylvian corticotectal projection in cats.
    Segal RL; Beckstead RM
    J Comp Neurol; 1984 May; 225(2):259-75. PubMed ID: 6725646
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Areal differences of NPY mRNA-expressing neurons are established in the late postnatal rat visual cortex in vivo, but not in organotypic cultures.
    Obst K; Wahle P
    Eur J Neurosci; 1995 Oct; 7(10):2139-58. PubMed ID: 8542071
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cross-modal reorganization of cortical afferents to dorsal auditory cortex following early- and late-onset deafness.
    Kok MA; Chabot N; Lomber SG
    J Comp Neurol; 2014 Feb; 522(3):654-75. PubMed ID: 23897533
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Posteromedial lateral suprasylvian motion area modulates direction but not orientation preference in area 17 of cats.
    Shen W; Liang Z; Chen X; Shou T
    Neuroscience; 2006 Oct; 142(3):905-16. PubMed ID: 16890373
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Early ontogenetic development of regular organization of corticocortical connections between visual areas 17 and posteromedial lateral suprasylvian area in the cat].
    Merkul'eva NS; Makarov FN
    Morfologiia; 2010; 137(6):20-3. PubMed ID: 21513100
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inactivation of the infragranular striate cortex broadens orientation tuning of supragranular visual neurons in the cat.
    Allison JD; Bonds AB
    Exp Brain Res; 1994; 101(3):415-26. PubMed ID: 7531649
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The development of parvalbumin and calbindin-D28k immunoreactive interneurons in kitten visual cortical areas.
    Hogan D; Berman NE
    Brain Res Dev Brain Res; 1994 Jan; 77(1):1-21. PubMed ID: 8131257
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Extrinsic and intrinsic connections of the cat's lateral suprasylvian visual area.
    Norita M; Kase M; Hoshino K; Meguro R; Funaki S; Hirano S; McHaffie JG
    Prog Brain Res; 1996; 112():231-50. PubMed ID: 8979833
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of neonatal splitting of the optic chiasm on the development of feline visual callosal connections.
    Boire D; Morris R; Ptito M; Lepore F; Frost DO
    Exp Brain Res; 1995; 104(2):275-86. PubMed ID: 7672020
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Corticocortical connections between visual areas 17 and 18a of the rat studied in vitro: spatial and temporal organisation of functional synaptic responses.
    Nowak LG; James AC; Bullier J
    Exp Brain Res; 1997 Nov; 117(2):219-41. PubMed ID: 9419069
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Neurons accumulating [3H]gamma-aminobutyric acid (GABA) in supragranular layers of cat primary auditory cortex (AI).
    Winer JA
    Neuroscience; 1986 Nov; 19(3):771-93. PubMed ID: 3796815
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Postnatal development of area 17 callosal connections in Tupaia.
    Kretz R; Rager G
    J Comp Neurol; 1992 Dec; 326(2):217-28. PubMed ID: 1282524
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: a quantitative immunohistochemical analysis.
    Hof PR; Morrison JH
    J Comp Neurol; 1995 Feb; 352(2):161-86. PubMed ID: 7721988
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.