These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 9651014)
1. Monte Carlo simulation of source-excited in vivo x-ray fluorescence measurements of heavy metals. O'Meara JM; Chettle DR; McNeill FE; Prestwich WV; Svensson CE Phys Med Biol; 1998 Jun; 43(6):1413-28. PubMed ID: 9651014 [TBL] [Abstract][Full Text] [Related]
2. Comments on the paper 'Monte Carlo simulation of source-excited in vivo x-ray fluorescence measurements of heavy metals'. Tartari A; Casnati E; Baraldi C; Fernandez JE; Felsteiner J Phys Med Biol; 1999 Mar; 44(3):L3-6. PubMed ID: 10211815 [No Abstract] [Full Text] [Related]
3. In vivo X-ray fluorescence (XRF) measurement of uranium in bone. O'Meara JM; Chettle DR; McNeill FE; Webber CE Appl Radiat Isot; 1998; 49(5-6):713-5. PubMed ID: 9569588 [TBL] [Abstract][Full Text] [Related]
4. The feasibility of measuring bone uranium concentrations in vivo using source excited K x-ray fluorescence. O'Meara JM; Chettle DR; McNeill FE; Webber CE Phys Med Biol; 1997 Jun; 42(6):1109-20. PubMed ID: 9194131 [TBL] [Abstract][Full Text] [Related]
5. Development of the specific purpose Monte Carlo code CEARXRF for the design and use of in vivo X-ray fluorescence analysis systems for lead in bone. Ao Q; Lee SH; Gardner RP Appl Radiat Isot; 1997; 48(10-12):1403-12. PubMed ID: 9463866 [TBL] [Abstract][Full Text] [Related]
6. Normalisation with coherent scatter signal: improvements in the calibration procedure of the 57Co-based in vivo XRF bone-Pb measurement. O'Meara JM; Börjesson J; Chettle DR; Mattsson S Appl Radiat Isot; 2001 Feb; 54(2):319-25. PubMed ID: 11200895 [TBL] [Abstract][Full Text] [Related]
7. The Monte Carlo modelling of in vivo x-ray fluorescence measurement of lead in tissue. Wallace JD Phys Med Biol; 1994 Oct; 39(10):1745-56. PubMed ID: 15551542 [TBL] [Abstract][Full Text] [Related]
8. Optimization of in vivo X-ray fluorescence analysis methods for bone lead by simulation with the Monte Carlo code CEARXRF. Ao Q; Lee SH; Gardner RP Appl Radiat Isot; 1997; 48(10-12):1413-23. PubMed ID: 9463867 [TBL] [Abstract][Full Text] [Related]
9. A Monte Carlo (MC) based individual calibration method for in vivo x-ray fluorescence analysis (XRF). Hansson M; Isaksson M Phys Med Biol; 2007 Apr; 52(7):2009-19. PubMed ID: 17374924 [TBL] [Abstract][Full Text] [Related]
10. Compton scattering profile for in vivo XRF techniques. Tartari A; Baraldi C; Felsteiner J; Casnati E Phys Med Biol; 1991 May; 36(5):567-78. PubMed ID: 2068224 [TBL] [Abstract][Full Text] [Related]
11. Improving x-ray fluorescence signal for benchtop polychromatic cone-beam x-ray fluorescence computed tomography by incident x-ray spectrum optimization: a Monte Carlo study. Manohar N; Jones BL; Cho SH Med Phys; 2014 Oct; 41(10):101906. PubMed ID: 25281958 [TBL] [Abstract][Full Text] [Related]
12. A Monte Carlo program for the determination of the optimum back scatter geometry when measuring mercury and other heavy metals in vivo. Börjesson J; Jonson R; Mattsson S; Müntzing K; Tölli H Basic Life Sci; 1993; 60():267-73. PubMed ID: 8110125 [No Abstract] [Full Text] [Related]
13. Real-time, ray casting-based scatter dose estimation for c-arm x-ray system. Alnewaini Z; Langer E; Schaber P; David M; Kretz D; Steil V; Hesser J J Appl Clin Med Phys; 2017 Mar; 18(2):144-153. PubMed ID: 28300387 [TBL] [Abstract][Full Text] [Related]
14. Monte Carlo simulations of in vivo K-shell X-ray fluorescence bone lead measurement and implications for radiation dosimetry. Ahmed N; Fleming DE; O'Meara JM Appl Radiat Isot; 2006 Sep; 64(9):1036-42. PubMed ID: 16766194 [TBL] [Abstract][Full Text] [Related]
15. Optimizing detector geometry for trace element mapping by X-ray fluorescence. Sun Y; Gleber SC; Jacobsen C; Kirz J; Vogt S Ultramicroscopy; 2015 May; 152():44-56. PubMed ID: 25600825 [TBL] [Abstract][Full Text] [Related]
17. Measurements and Monte Carlo Simulations of 241Am Activities in Three Skull Phantoms: EURADOS-USTUR Collaboration. López MA; Nogueira P; Vrba T; Tanner RJ; Rühm W; Tolmachev SY Health Phys; 2019 Aug; 117(2):193-201. PubMed ID: 31022011 [TBL] [Abstract][Full Text] [Related]
18. Estimation of a method detection limit for an in vivo XRF arsenic detection system. Studinski RC; McNeill FE; Chettle DR; O'Meara JM Phys Med Biol; 2005 Feb; 50(3):521-30. PubMed ID: 15773727 [TBL] [Abstract][Full Text] [Related]
19. An investigation of backscatter factors for kilovoltage x-rays: a comparison between Monte Carlo simulations and Gafchromic EBT film measurements. Kim J; Hill R; Claridge Mackonis E; Kuncic Z Phys Med Biol; 2010 Feb; 55(3):783-97. PubMed ID: 20071763 [TBL] [Abstract][Full Text] [Related]
20. Modification to the Monte Carlo N-particle code for simulating direct, in vivo measurement of stable lead in bone. Lodwick CJ; Spitz HB Health Phys; 2008 Jun; 94(6):519-26. PubMed ID: 18469585 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]