BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 9651222)

  • 1. Localized sources of neurotrophins initiate axon collateral sprouting.
    Gallo G; Letourneau PC
    J Neurosci; 1998 Jul; 18(14):5403-14. PubMed ID: 9651222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nerve growth factor induces axonal filopodia through localized microdomains of phosphoinositide 3-kinase activity that drive the formation of cytoskeletal precursors to filopodia.
    Ketschek A; Gallo G
    J Neurosci; 2010 Sep; 30(36):12185-97. PubMed ID: 20826681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nerve growth factor promotes reorganization of the axonal microtubule array at sites of axon collateral branching.
    Ketschek A; Jones S; Spillane M; Korobova F; Svitkina T; Gallo G
    Dev Neurobiol; 2015 Dec; 75(12):1441-61. PubMed ID: 25846486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nerve growth factor-induced formation of axonal filopodia and collateral branches involves the intra-axonal synthesis of regulators of the actin-nucleating Arp2/3 complex.
    Spillane M; Ketschek A; Donnelly CJ; Pacheco A; Twiss JL; Gallo G
    J Neurosci; 2012 Dec; 32(49):17671-89. PubMed ID: 23223289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of actomyosin contractility by PI3K in sensory axons.
    Orlova I; Silver L; Gallo G
    Dev Neurobiol; 2007 Dec; 67(14):1843-51. PubMed ID: 17701990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drebrin coordinates the actin and microtubule cytoskeleton during the initiation of axon collateral branches.
    Ketschek A; Spillane M; Dun XP; Hardy H; Chilton J; Gallo G
    Dev Neurobiol; 2016 Oct; 76(10):1092-110. PubMed ID: 26731339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytoskeletal dynamics underlying collateral membrane protrusions induced by neurotrophins in cultured Xenopus embryonic neurons.
    Gibney J; Zheng JQ
    J Neurobiol; 2003 Feb; 54(2):393-405. PubMed ID: 12500314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An analysis of an axonal gradient of phosphorylated MAP 1B in cultured rat sensory neurons.
    Bush MS; Goold RG; Moya F; Gordon-Weeks PR
    Eur J Neurosci; 1996 Feb; 8(2):235-48. PubMed ID: 8714695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CSPGs inhibit axon branching by impairing mitochondria-dependent regulation of actin dynamics and axonal translation.
    Sainath R; Ketschek A; Grandi L; Gallo G
    Dev Neurobiol; 2017 Apr; 77(4):454-473. PubMed ID: 27429169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Netrin-1 and semaphorin 3A promote or inhibit cortical axon branching, respectively, by reorganization of the cytoskeleton.
    Dent EW; Barnes AM; Tang F; Kalil K
    J Neurosci; 2004 Mar; 24(12):3002-12. PubMed ID: 15044539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Netrin-1 induces axon branching in developing cortical neurons by frequency-dependent calcium signaling pathways.
    Tang F; Kalil K
    J Neurosci; 2005 Jul; 25(28):6702-15. PubMed ID: 16014732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The actin nucleating Arp2/3 complex contributes to the formation of axonal filopodia and branches through the regulation of actin patch precursors to filopodia.
    Spillane M; Ketschek A; Jones SL; Korobova F; Marsick B; Lanier L; Svitkina T; Gallo G
    Dev Neurobiol; 2011 Sep; 71(9):747-58. PubMed ID: 21557512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurotrophins support the development of diverse sensory axon morphologies.
    Lentz SI; Knudson CM; Korsmeyer SJ; Snider WD
    J Neurosci; 1999 Feb; 19(3):1038-48. PubMed ID: 9920667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different signaling pathways mediate regenerative versus developmental sensory axon growth.
    Liu RY; Snider WD
    J Neurosci; 2001 Sep; 21(17):RC164. PubMed ID: 11511695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RhoA-kinase coordinates F-actin organization and myosin II activity during semaphorin-3A-induced axon retraction.
    Gallo G
    J Cell Sci; 2006 Aug; 119(Pt 16):3413-23. PubMed ID: 16899819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cytoskeletal and signaling mechanisms of axon collateral branching.
    Gallo G
    Dev Neurobiol; 2011 Mar; 71(3):201-20. PubMed ID: 21308993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different contributions of microtubule dynamics and transport to the growth of axons and collateral sprouts.
    Gallo G; Letourneau PC
    J Neurosci; 1999 May; 19(10):3860-73. PubMed ID: 10234018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. It takes a village to raise a branch: Cellular mechanisms of the initiation of axon collateral branches.
    Armijo-Weingart L; Gallo G
    Mol Cell Neurosci; 2017 Oct; 84():36-47. PubMed ID: 28359843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytoskeletal and morphological alterations underlying axonal sprouting after localized transection of cortical neuron axons in vitro.
    Chuckowree JA; Vickers JC
    J Neurosci; 2003 May; 23(9):3715-25. PubMed ID: 12736342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of NGF and sensory nerve stimulation on collateral sprouting and gene expression in adult sensory neurons.
    Mearow KM
    Exp Neurol; 1998 May; 151(1):14-25. PubMed ID: 9582251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.