These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 9651316)
1. Functional roles of conserved amino acid residues in DNA methyltransferases investigated by site-directed mutagenesis of the EcoRV adenine-N6-methyltransferase. Roth M; Helm-Kruse S; Friedrich T; Jeltsch A J Biol Chem; 1998 Jul; 273(28):17333-42. PubMed ID: 9651316 [TBL] [Abstract][Full Text] [Related]
2. N6-Adenosine DNA Methyltransferase from H. pylori 98-10 Strain in Complex with DNA and AdoMet: Structural Insights from in Silico Studies. Singh S; Guruprasad L J Phys Chem B; 2017 Jan; 121(2):365-378. PubMed ID: 28054779 [TBL] [Abstract][Full Text] [Related]
3. Functional roles of the conserved aromatic amino acid residues at position 108 (motif IV) and position 196 (motif VIII) in base flipping and catalysis by the N6-adenine DNA methyltransferase from Thermus aquaticus. Pues H; Bleimling N; Holz B; Wölcke J; Weinhold E Biochemistry; 1999 Feb; 38(5):1426-34. PubMed ID: 9931007 [TBL] [Abstract][Full Text] [Related]
4. Mutational analysis of target base flipping by the EcoRV adenine-N6 DNA methyltransferase. Jeltsch A; Roth M; Friedrich T J Mol Biol; 1999 Jan; 285(3):1121-30. PubMed ID: 9918720 [TBL] [Abstract][Full Text] [Related]
5. The conserved aspartate in motif III of b family AdoMet-dependent DNA methyltransferase is important for methylation. Gopinath A; Kulkarni M; Ahmed I; Chouhan OP; Saikrishnan K J Biosci; 2020; 45():. PubMed ID: 31965988 [TBL] [Abstract][Full Text] [Related]
6. Stopped-flow and mutational analysis of base flipping by the Escherichia coli Dam DNA-(adenine-N6)-methyltransferase. Liebert K; Hermann A; Schlickenrieder M; Jeltsch A J Mol Biol; 2004 Aug; 341(2):443-54. PubMed ID: 15276835 [TBL] [Abstract][Full Text] [Related]
7. How does a DNA interacting enzyme change its specificity during molecular evolution? A site-directed mutagenesis study at the DNA binding site of the DNA-(adenine-N6)-methyltransferase EcoRV. Beck C; Cranz S; Solmaz M; Roth M; Jeltsch A Biochemistry; 2001 Sep; 40(37):10956-65. PubMed ID: 11551190 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure of the DpnM DNA adenine methyltransferase from the DpnII restriction system of streptococcus pneumoniae bound to S-adenosylmethionine. Tran PH; Korszun ZR; Cerritelli S; Springhorn SS; Lacks SA Structure; 1998 Dec; 6(12):1563-75. PubMed ID: 9862809 [TBL] [Abstract][Full Text] [Related]
9. Changing the target base specificity of the EcoRV DNA methyltransferase by rational de novo protein-design. Roth M; Jeltsch A Nucleic Acids Res; 2001 Aug; 29(15):3137-44. PubMed ID: 11470870 [TBL] [Abstract][Full Text] [Related]
10. Structure-based sequence alignment of three AdoMet-dependent DNA methyltransferases. O'Gara M; McCloy K; Malone T; Cheng X Gene; 1995 May; 157(1-2):135-8. PubMed ID: 7607477 [TBL] [Abstract][Full Text] [Related]
11. Probing the DNA interface of the EcoRV DNA-(adenine-N6)-methyltransferase by site-directed mutagenesis, fluorescence spectroscopy, and UV cross-linking. Beck C; Jeltsch A Biochemistry; 2002 Dec; 41(48):14103-10. PubMed ID: 12450373 [TBL] [Abstract][Full Text] [Related]
12. Functional analysis of conserved motifs in EcoP15I DNA methyltransferase. Ahmad I; Rao DN J Mol Biol; 1996 Jun; 259(2):229-40. PubMed ID: 8656425 [TBL] [Abstract][Full Text] [Related]
13. Investigation of the C-terminal domain of the bacterial DNA-(adenine N6)-methyltransferase CcrM. Maier JA; Albu RF; Jurkowski TP; Jeltsch A Biochimie; 2015 Dec; 119():60-7. PubMed ID: 26475175 [TBL] [Abstract][Full Text] [Related]
14. Biochemical and structural characterization of a DNA N6-adenine methyltransferase from Helicobacter pylori. Ma B; Ma J; Liu D; Guo L; Chen H; Ding J; Liu W; Zhang H Oncotarget; 2016 Jul; 7(27):40965-40977. PubMed ID: 27259995 [TBL] [Abstract][Full Text] [Related]
15. Functional mapping of the EcoRV DNA methyltransferase by random mutagenesis and screening for catalytically inactive mutants. Friedrich T; Roth M; Helm-Kruse S; Jeltsch A Biol Chem; 1998; 379(4-5):475-80. PubMed ID: 9628340 [TBL] [Abstract][Full Text] [Related]
16. Mutational analysis of the catalytic domain of the murine Dnmt3a DNA-(cytosine C5)-methyltransferase. Gowher H; Loutchanwoot P; Vorobjeva O; Handa V; Jurkowska RZ; Jurkowski TP; Jeltsch A J Mol Biol; 2006 Mar; 357(3):928-41. PubMed ID: 16472822 [TBL] [Abstract][Full Text] [Related]
17. Conserved sequence motif DPPY in region IV of the phage T4 Dam DNA-[N6-adenine]-methyltransferase is important for S-adenosyl-L-methionine binding. Kossykh VG; Schlagman SL; Hattman S Nucleic Acids Res; 1993 Oct; 21(20):4659-62. PubMed ID: 8233814 [TBL] [Abstract][Full Text] [Related]
18. Structure prediction of the EcoRV DNA methyltransferase based on mutant profiling, secondary structure analysis, comparison with known structures of methyltransferases and isolation of catalytically inactive single mutants. Jeltsch A; Sobotta T; Pingoud A Protein Eng; 1996 May; 9(5):413-23. PubMed ID: 8795041 [TBL] [Abstract][Full Text] [Related]
19. Studies on the function of conserved sequence motifs in the T4 Dam-[N6-adenine] and EcoRII [C5-cytosine] DNA methyltransferases. Kossykh VG; Schlagman SL; Hattman S Gene; 1995 May; 157(1-2):125-6. PubMed ID: 7607473 [TBL] [Abstract][Full Text] [Related]
20. Molecular enzymology of the EcoRV DNA-(Adenine-N (6))-methyltransferase: kinetics of DNA binding and bending, kinetic mechanism and linear diffusion of the enzyme on DNA. Gowher H; Jeltsch A J Mol Biol; 2000 Oct; 303(1):93-110. PubMed ID: 11021972 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]