BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 9651318)

  • 1. A leucine-based motif mediates the endocytosis of vesicular monoamine and acetylcholine transporters.
    Tan PK; Waites C; Liu Y; Krantz DE; Edwards RH
    J Biol Chem; 1998 Jul; 273(28):17351-60. PubMed ID: 9651318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A phosphorylation site regulates sorting of the vesicular acetylcholine transporter to dense core vesicles.
    Krantz DE; Waites C; Oorschot V; Liu Y; Wilson RI; Tan PK; Klumperman J; Edwards RH
    J Cell Biol; 2000 Apr; 149(2):379-96. PubMed ID: 10769030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization of the vesicular acetylcholine transporter in cholinergic nerve terminals and its targeting to a specific population of small synaptic vesicles.
    Weihe E; Tao-Cheng JH; Schäfer MK; Erickson JD; Eiden LE
    Proc Natl Acad Sci U S A; 1996 Apr; 93(8):3547-52. PubMed ID: 8622973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport mechanisms in acetylcholine and monoamine storage.
    Parsons SM
    FASEB J; 2000 Dec; 14(15):2423-34. PubMed ID: 11099460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The vesicular monoamine transporter VMAT2 and vesicular acetylcholine transporter VAChT are sorted to separate vesicle populations in PC12 cells.
    Tao-Cheng JH; Eiden LE
    Adv Pharmacol; 1998; 42():250-3. PubMed ID: 9327891
    [No Abstract]   [Full Text] [Related]  

  • 6. Differential localization of vesicular acetylcholine and monoamine transporters in PC12 cells but not CHO cells.
    Liu Y; Edwards RH
    J Cell Biol; 1997 Nov; 139(4):907-16. PubMed ID: 9362509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociation of the vesicular acetylcholine transporter domains important for high-affinity transport recognition, binding of vesamicol and targeting to synaptic vesicles.
    Varoqui H; Erickson JD
    J Physiol Paris; 1998 Apr; 92(2):141-4. PubMed ID: 9782458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A splice variant of the Drosophila vesicular monoamine transporter contains a conserved trafficking domain and functions in the storage of dopamine, serotonin, and octopamine.
    Greer CL; Grygoruk A; Patton DE; Ley B; Romero-Calderon R; Chang HY; Houshyar R; Bainton RJ; Diantonio A; Krantz DE
    J Neurobiol; 2005 Sep; 64(3):239-58. PubMed ID: 15849736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An acidic motif retains vesicular monoamine transporter 2 on large dense core vesicles.
    Waites CL; Mehta A; Tan PK; Thomas G; Edwards RH; Krantz DE
    J Cell Biol; 2001 Mar; 152(6):1159-68. PubMed ID: 11257117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trafficking of green fluorescent protein tagged-vesicular acetylcholine transporter to varicosities in a cholinergic cell line.
    Santos MS; Barbosa J; Veloso GS; Ribeiro F; Kushmerick C; Gomez MV; Ferguson SS; Prado VF; Prado MA
    J Neurochem; 2001 Sep; 78(5):1104-13. PubMed ID: 11553684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of residues involved in substrate recognition by a vesicular monoamine transporter.
    Merickel A; Rosandich P; Peter D; Edwards RH
    J Biol Chem; 1995 Oct; 270(43):25798-804. PubMed ID: 7592763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Individual residues contribute to multiple differences in ligand recognition between vesicular monoamine transporters 1 and 2.
    Finn JP; Edwards RH
    J Biol Chem; 1997 Jun; 272(26):16301-7. PubMed ID: 9195934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein kinase C-mediated translocation of secretory vesicles to plasma membrane and enhancement of neurotransmitter release from PC12 cells.
    Shoji-Kasai Y; Itakura M; Kataoka M; Yamamori S; Takahashi M
    Eur J Neurosci; 2002 Apr; 15(8):1390-4. PubMed ID: 11994133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trafficking of the vesicular acetylcholine transporter in SN56 cells: a dynamin-sensitive step and interaction with the AP-2 adaptor complex.
    Barbosa J; Ferreira LT; Martins-Silva C; Santos MS; Torres GE; Caron MG; Gomez MV; Ferguson SS; Prado MA; Prado VF
    J Neurochem; 2002 Sep; 82(5):1221-8. PubMed ID: 12358769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo imaging of the vesicular acetylcholine transporter and the vesicular monoamine transporter.
    Efange SM
    FASEB J; 2000 Dec; 14(15):2401-13. PubMed ID: 11099458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholinergic vesicular transporters in progressive supranuclear palsy.
    Suzuki M; Desmond TJ; Albin RL; Frey KA
    Neurology; 2002 Apr; 58(7):1013-8. PubMed ID: 11940684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation of a vesicular monoamine transporter by casein kinase II.
    Krantz DE; Peter D; Liu Y; Edwards RH
    J Biol Chem; 1997 Mar; 272(10):6752-9. PubMed ID: 9045708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The vesicular acetylcholine transporter interacts with clathrin-associated adaptor complexes AP-1 and AP-2.
    Kim MH; Hersh LB
    J Biol Chem; 2004 Mar; 279(13):12580-7. PubMed ID: 14724281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Caenorhabditis elegans to study vesicular transport.
    Rand JB; Duerr JS; Frisby DL
    Methods Enzymol; 1998; 296():529-47. PubMed ID: 9779472
    [No Abstract]   [Full Text] [Related]  

  • 20. Vesicular neurotransmitter transporters in Huntington's disease: initial observations and comparison with traditional synaptic markers.
    Suzuki M; Desmond TJ; Albin RL; Frey KA
    Synapse; 2001 Sep; 41(4):329-36. PubMed ID: 11494403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.