BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 9651342)

  • 1. Directed mutations in the poorly defined region of porcine liver fructose-1,6-bisphosphatase significantly affect catalysis and the mechanism of AMP inhibition.
    Kurbanov FT; Choe JY; Honzatko RB; Fromm HJ
    J Biol Chem; 1998 Jul; 273(28):17511-6. PubMed ID: 9651342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study of subunit interface residues of fructose-1,6-bisphosphatase by site-directed mutagenesis: effects on AMP and Mg2+ affinities.
    Shyur LF; Aleshin AE; Fromm HJ
    Biochemistry; 1996 Jun; 35(23):7492-8. PubMed ID: 8652527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The C1-C2 interface residue lysine 50 of pig kidney fructose-1, 6-bisphosphatase has a crucial role in the cooperative signal transmission of the AMP inhibition.
    Cárcamo JG; Yañez AJ; Ludwig HC; León O; Pinto RO; Reyes AM; Slebe JC
    Eur J Biochem; 2000 Apr; 267(8):2242-51. PubMed ID: 10759847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutation of arginine 276 to methionine changes Mg2+ cooperativity and the kinetic mechanism of fructose-1,6-bisphosphatase.
    Zhang R; Fromm HJ
    Biochemistry; 1995 Jun; 34(25):8190-5. PubMed ID: 7794933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-directed mutagenesis of residues at subunit interfaces of porcine fructose-1,6-bisphosphatase.
    Shyur LF; Aleshin AE; Honzatko RB; Fromm HJ
    J Biol Chem; 1996 Feb; 271(6):3005-10. PubMed ID: 8621693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Replacement of glutamic acid 29 with glutamine leads to a loss of cooperativity for AMP with porcine fructose-1,6-bisphosphatase.
    Chen M; Chen L; Fromm HJ
    J Biol Chem; 1994 Feb; 269(8):5554-8. PubMed ID: 7907084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of the dimer-dimer interface for allosteric signal transduction and AMP cooperativity of pig kidney fructose-1,6-bisphosphatase. Site-specific mutagenesis studies of Glu-192 and Asp-187 residues on the 190's loop.
    Lu G; Giroux EL; Kantrowitz ER
    J Biol Chem; 1997 Feb; 272(8):5076-81. PubMed ID: 9030572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-directed mutagenesis of the substrate binding site of porcine fructose-1,6-bisphosphatase.
    Shyur LF; Zhang R; Fromm HJ
    Arch Biochem Biophys; 1995 May; 319(1):123-7. PubMed ID: 7771775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations in the hinge of a dynamic loop broadly influence functional properties of fructose-1,6-bisphosphatase.
    Nelson SW; Choe JY; Honzatko RB; Fromm HJ
    J Biol Chem; 2000 Sep; 275(39):29986-92. PubMed ID: 10896931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The allosteric site of human liver fructose-1,6-bisphosphatase. Analysis of six AMP site mutants based on the crystal structure.
    Gidh-Jain M; Zhang Y; van Poelje PD; Liang JY; Huang S; Kim J; Elliott JT; Erion MD; Pilkis SJ; Raafat el-Maghrabi M
    J Biol Chem; 1994 Nov; 269(44):27732-8. PubMed ID: 7961695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Major changes in the kinetic mechanism of AMP inhibition and AMP cooperativity attend the mutation of Arg49 in fructose-1,6-bisphosphatase.
    Shyur LF; Poland BW; Honzatko RB; Fromm HJ
    J Biol Chem; 1997 Oct; 272(42):26295-9. PubMed ID: 9334199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical properties of mutant and wild-type fructose-1,6-bisphosphatases are consistent with the coupling of intra- and intersubunit conformational changes in the T- and R-state transition.
    Shyur LF; Aleshin AE; Honzatko RB; Fromm HJ
    J Biol Chem; 1996 Dec; 271(52):33301-7. PubMed ID: 8969189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The N-terminal segment of recombinant porcine fructose-1,6-bisphosphatase participates in the allosteric regulation of catalysis.
    Nelson SW; Kurbanov FT; Honzatko RB; Fromm HJ
    J Biol Chem; 2001 Mar; 276(9):6119-24. PubMed ID: 11096109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different sensitivities of mutants and chimeric forms of human muscle and liver fructose-1,6-bisphosphatases towards AMP.
    Rakus D; Tillmann H; Wysocki R; Ulaszewski S; Eschrich K; Dzugaj A
    Biol Chem; 2003 Jan; 384(1):51-8. PubMed ID: 12674499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of recombinant fructose-1,6-bisphosphatase gene mutations: evidence of inhibition/activation of FBPase protein by gene mutation.
    Topaz G; Epiter-Smith V; Robalo C; Emad M; Ford V; Daley J; Byron J; Stieglitz KA
    Biosci Rep; 2019 Feb; 39(2):. PubMed ID: 30683805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AMP inhibition of pig kidney fructose-1,6-bisphosphatase.
    Kelley-Loughnane N; Kantrowitz ER
    Biochim Biophys Acta; 2001 Jul; 1548(1):66-71. PubMed ID: 11451439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The allosteric properties of rat liver fructose-1,6-bisphosphatase.
    Meek DW; Nimmo HG
    Biochem J; 1984 Aug; 222(1):131-8. PubMed ID: 6089752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fructose-1,6-bisphosphatase: arginine-22 is involved in stabilization of the T allosteric state.
    Lu G; Williams MK; Giroux EL; Kantrowitz ER
    Biochemistry; 1995 Oct; 34(41):13272-7. PubMed ID: 7577911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycine 122 is essential for cooperativity and binding of Mg2+ to porcine fructose-1,6-bisphosphatase.
    Zhang R; Chen L; Villeret V; Fromm HJ
    J Biol Chem; 1995 Jan; 270(1):54-8. PubMed ID: 7814419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutamic acid residue 98 is critical for catalysis in pig kidney fructose-1,6-bisphosphatase.
    Kelley N; Giroux EL; Lu G; Kantrowitz ER
    Biochem Biophys Res Commun; 1996 Feb; 219(3):848-52. PubMed ID: 8645268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.