BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 9651523)

  • 1. Intrinsic function of a neuronal network - a vertebrate central pattern generator.
    Grillner S; Ekeberg ; El Manira A; Lansner A; Parker D; Tegnér J; Wallén P
    Brain Res Brain Res Rev; 1998 May; 26(2-3):184-97. PubMed ID: 9651523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion channels of importance for the locomotor pattern generation in the lamprey brainstem-spinal cord.
    Grillner S; Wallén P; Hill R; Cangiano L; El Manira A
    J Physiol; 2001 May; 533(Pt 1):23-30. PubMed ID: 11351009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The intrinsic function of a motor system--from ion channels to networks and behavior.
    Grillner S; Cangiano L; Hu G; Thompson R; Hill R; Wallén P
    Brain Res; 2000 Dec; 886(1-2):224-236. PubMed ID: 11119698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer simulations of NMDA and non-NMDA receptor-mediated synaptic drive: sensory and supraspinal modulation of neurons and small networks.
    Tråvén HG; Brodin L; Lansner A; Ekeberg O; Wallén P; Grillner S
    J Neurophysiol; 1993 Aug; 70(2):695-709. PubMed ID: 8105036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-voltage-activated calcium channels in the lamprey locomotor network: simulation and experiment.
    Tegnér J; Hellgren-Kotaleski J; Lansner A; Grillner S
    J Neurophysiol; 1997 Apr; 77(4):1795-812. PubMed ID: 9114237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The spino-reticulo-spinal loop can slow down the NMDA-activated spinal locomotor network in lamprey.
    Vinay L; Grillner S
    Neuroreport; 1993 Jun; 4(6):609-12. PubMed ID: 8394151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural bases of goal-directed locomotion in vertebrates--an overview.
    Grillner S; Wallén P; Saitoh K; Kozlov A; Robertson B
    Brain Res Rev; 2008 Jan; 57(1):2-12. PubMed ID: 17916382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pharmacology of vertebrate spinal central pattern generators.
    Alford S; Schwartz E; Viana di Prisco G
    Neuroscientist; 2003 Jun; 9(3):217-28. PubMed ID: 15065817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effects of the reticulospinal system on locomotion in lamprey.
    Wannier T; Deliagina TG; Orlovsky GN; Grillner S
    J Neurophysiol; 1998 Jul; 80(1):103-12. PubMed ID: 9658032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GABAB receptor activation causes a depression of low- and high-voltage-activated Ca2+ currents, postinhibitory rebound, and postspike afterhyperpolarization in lamprey neurons.
    Matsushima T; Tegnér J; Hill RH; Grillner S
    J Neurophysiol; 1993 Dec; 70(6):2606-19. PubMed ID: 8120601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The calculation of frequency-shift functions for chains of coupled oscillators, with application to a network model of the lamprey locomotor pattern generator.
    Williams TL; Bowtell G
    J Comput Neurosci; 1997 Jan; 4(1):47-55. PubMed ID: 9046451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of high-voltage-activated calcium channel subtypes in a vertebrate spinal locomotor network.
    Büschges A; Wikström MA; Grillner S; El Manira A
    J Neurophysiol; 2000 Dec; 84(6):2758-66. PubMed ID: 11110806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural networks that co-ordinate locomotion and body orientation in lamprey.
    Grillner S; Deliagina T; Ekeberg O ; el Manira A; Hill RH; Lansner A; Orlovsky GN; Wallén P
    Trends Neurosci; 1995 Jun; 18(6):270-9. PubMed ID: 7571002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phasic modulation of transmission from vestibular inputs to reticulospinal neurons during fictive locomotion in lampreys.
    Bussières N; Dubuc R
    Brain Res; 1992 Jun; 582(1):147-53. PubMed ID: 1323371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion channels and locomotion.
    Grillner S
    Science; 1997 Nov; 278(5340):1087-8. PubMed ID: 9381205
    [No Abstract]   [Full Text] [Related]  

  • 16. Cellular network underlying locomotion as revealed in a lower vertebrate model: transmitters, membrane properties, circuitry, and simulation.
    Grillner S; Wallén P; Viana di Prisco G
    Cold Spring Harb Symp Quant Biol; 1990; 55():779-89. PubMed ID: 1983448
    [No Abstract]   [Full Text] [Related]  

  • 17. Calcium-dependent potassium channels play a critical role for burst termination in the locomotor network in lamprey.
    el Manira A; Tegnér J; Grillner S
    J Neurophysiol; 1994 Oct; 72(4):1852-61. PubMed ID: 7823105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensorimotor integration in the lamprey locomotor system.
    Wallén P
    Eur J Morphol; 1994 Aug; 32(2-4):168-75. PubMed ID: 7803163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuromodulation of vertebrate locomotor control networks.
    Miles GB; Sillar KT
    Physiology (Bethesda); 2011 Dec; 26(6):393-411. PubMed ID: 22170958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computer-based model for realistic simulations of neural networks. II. The segmental network generating locomotor rhythmicity in the lamprey.
    Wallén P; Ekeberg O; Lansner A; Brodin L; Tråvén H; Grillner S
    J Neurophysiol; 1992 Dec; 68(6):1939-50. PubMed ID: 1283406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.