These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 9651960)

  • 41. Comparison of new ultrasound index with laser reference and viscosity indexes for erythrocyte aggregation quantification.
    Rouffiac V; Peronneau P; Guglielmi JP; Del-Pino M; Lassau N; Levenson J
    Ultrasound Med Biol; 2003 Jun; 29(6):789-99. PubMed ID: 12837495
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modulation of red blood cell aggregation and blood viscosity by the covalent attachment of Pluronic copolymers.
    Armstrong JK; Meiselman HJ; Wenby RB; Fisher TC
    Biorheology; 2001; 38(2-3):239-47. PubMed ID: 11381178
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A point process approach to assess the frequency dependence of ultrasound backscattering by aggregating red blood cells.
    Savéry D; Cloutier G
    J Acoust Soc Am; 2001 Dec; 110(6):3252-62. PubMed ID: 11785826
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cyclic and radial variation of the Doppler power from porcine whole blood.
    Paeng DG; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Jun; 50(6):614-22. PubMed ID: 12839173
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Theoretical and experimental analysis of the sedimentation kinetics of concentrated red cell suspensions in a centrifugal field: determination of the aggregation and deformation of RBC by flux density and viscosity functions.
    Lerche D; Frömer D
    Biorheology; 2001; 38(2-3):249-62. PubMed ID: 11381179
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method.
    Zhang J; Johnson PC; Popel AS
    J Biomech; 2008; 41(1):47-55. PubMed ID: 17888442
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sensitivity of the ultrasonic interferometry method (Echo-Cell) to changes of red cell aggregation: application to diabetes.
    Khodabandehlou T; Boynard M; Guillet R; Devehat CL
    Clin Hemorheol Microcirc; 2002; 27(3-4):219-32. PubMed ID: 12454379
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rheological effects of red blood cell aggregation in the venous network: a review of recent studies.
    Bishop JJ; Popel AS; Intaglietta M; Johnson PC
    Biorheology; 2001; 38(2-3):263-74. PubMed ID: 11381180
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Aggregation behavior of red blood cells in shear flow. A theoretical interpretation of simultaneous rheo-optical and viscometric measurements.
    Berli CL; Quemada D
    Biorheology; 2001; 38(1):27-38. PubMed ID: 11381163
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cyclic variations of high-frequency ultrasonic backscattering from blood under pulsatile flow.
    Huang CC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Aug; 56(8):1677-88. PubMed ID: 19686983
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of fibrinogen and alpha2-macroglobulin and their apheretic elimination on general blood rheology and rheological characteristics of red blood cell aggregates.
    Kirschkamp T; Schmid-Schönbein H; Weinberger A; Smeets R
    Ther Apher Dial; 2008 Oct; 12(5):360-7. PubMed ID: 18937718
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultrasonic backscatter from rat blood in aggregating media under in vitro rotational flow.
    Nam KH; Paeng DG; Choi MJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):270-9. PubMed ID: 19251514
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of enhanced red blood cell aggregation on blood flow resistance in an isolated-perfused guinea pig heart preparation.
    Yalcin O; Meiselman HJ; Armstrong JK; Baskurt OK
    Biorheology; 2005; 42(6):511-20. PubMed ID: 16369087
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Disturbed blood flow structuring as critical factor of hemorheological disorders in microcirculation.
    Mchedlishvili G
    Clin Hemorheol Microcirc; 1998 Dec; 19(4):315-25. PubMed ID: 9972669
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Analytical model for effects of shear rate on rouleau size and blood viscosity.
    Chen J; Huang Z
    Biophys Chem; 1996 Feb; 58(3):273-9. PubMed ID: 8820412
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of shear rate on rouleau formation in simple shear flow.
    Murata T; Secomb TW
    Biorheology; 1988; 25(1-2):113-22. PubMed ID: 3196807
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rheological behaviors of bovine blood forming artificial rouleaux.
    Kaibara M
    Biorheology; 1983; 20(5):583-92. PubMed ID: 6203573
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Opposite effects of red blood cell aggregation on resistance to blood flow.
    Vicaut E
    J Cardiovasc Surg (Torino); 1995 Aug; 36(4):361-8. PubMed ID: 7593148
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Moderate heat treatment of only red blood cells (RBC) slows down the rate of RBC-RBC aggregation in plasma.
    Lerche D; Bäumler H
    Biorheology; 1984; 21(3):393-403. PubMed ID: 6466808
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Time-dependent rheological behavior of blood at low shear in narrow vertical tubes.
    Alonso C; Pries AR; Gaehtgens P
    Am J Physiol; 1993 Aug; 265(2 Pt 2):H553-61. PubMed ID: 8368359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.