These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 9652080)

  • 21. Target switching in curved human arm movements is predicted by changing a single control parameter.
    Hoffmann H
    Exp Brain Res; 2011 Jan; 208(1):73-87. PubMed ID: 21046367
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction of visual and proprioceptive feedback during adaptation of human reaching movements.
    Scheidt RA; Conditt MA; Secco EL; Mussa-Ivaldi FA
    J Neurophysiol; 2005 Jun; 93(6):3200-13. PubMed ID: 15659526
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fusion of visuo-ocular and vestibular signals in arm motor control.
    Guillaud E; Gauthier G; Vercher JL; Blouin J
    J Neurophysiol; 2006 Feb; 95(2):1134-46. PubMed ID: 16221749
    [TBL] [Abstract][Full Text] [Related]  

  • 24. What activates the human mirror neuron system during observation of artificial movements: bottom-up visual features or top-down intentions?
    Engel A; Burke M; Fiehler K; Bien S; Rösler F
    Neuropsychologia; 2008; 46(7):2033-42. PubMed ID: 18339409
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid online correction is selectively suppressed during movement with a visuomotor transformation.
    Gritsenko V; Kalaska JF
    J Neurophysiol; 2010 Dec; 104(6):3084-104. PubMed ID: 20844106
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visual control of manual aiming movements in 6- to 10-year-old children and adults.
    Lhuisset L; Proteau L
    J Mot Behav; 2004 Jun; 36(2):161-72. PubMed ID: 15130867
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of rotational movements, hand shaping, and accuracy in advance and withdrawal for the reach-to-eat movement in human infants aged 6-12 months.
    Sacrey LA; Karl JM; Whishaw IQ
    Infant Behav Dev; 2012 Jun; 35(3):543-60. PubMed ID: 22728335
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Eye-hand coordination: saccades are faster when accompanied by a coordinated arm movement.
    Snyder LH; Calton JL; Dickinson AR; Lawrence BM
    J Neurophysiol; 2002 May; 87(5):2279-86. PubMed ID: 11976367
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamical structure of hand trajectories during pole balancing.
    Cluff T; Riley MA; Balasubramaniam R
    Neurosci Lett; 2009 Oct; 464(2):88-92. PubMed ID: 19699264
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinematic markers of distance-specific control in linear hand movements.
    Kirsch W; Hennighausen E
    J Mot Behav; 2011; 43(3):253-62. PubMed ID: 21598157
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Review of models for the generation of multi-joint movements in 3-D.
    Gielen S
    Adv Exp Med Biol; 2009; 629():523-50. PubMed ID: 19227519
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visual guidance of arm reaching: online adjustments of movement direction are impaired by amplitude control.
    Sarlegna FR; Blouin J
    J Vis; 2010 May; 10(5):24. PubMed ID: 20616127
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of sensory information in updating internal models of the effector during arm tracking.
    Vercher JL; Sarès F; Blouin J; Bourdin C; Gauthier G
    Prog Brain Res; 2003; 142():203-22. PubMed ID: 12693263
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulating closed- and open-loop voluntary movement: a nonlinear control-systems approach.
    Davidson PR; Jones RD; Andreae JH; Sirisena HR
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1242-52. PubMed ID: 12450354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inertial properties of the arm are accurately predicted during motor imagery.
    Gentili R; Cahouet V; Ballay Y; Papaxanthis C
    Behav Brain Res; 2004 Dec; 155(2):231-9. PubMed ID: 15364482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experience-based priming of body parts: a study of action imitation.
    Gillmeister H; Catmur C; Liepelt R; Brass M; Heyes C
    Brain Res; 2008 Jun; 1217():157-70. PubMed ID: 18502404
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cortical adaptations and motor performance improvements associated with short-term bimanual training.
    Smith AL; Staines WR
    Brain Res; 2006 Feb; 1071(1):165-74. PubMed ID: 16405871
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anticipatory planning of sequential hand and finger movements.
    Herbort O; Butz MV
    J Mot Behav; 2009 Nov; 41(6):561-9. PubMed ID: 19892660
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visuomotor adaptation does not recalibrate kinesthetic sense of felt hand path.
    Wong T; Henriques DY
    J Neurophysiol; 2009 Feb; 101(2):614-23. PubMed ID: 19019980
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Problems in the coupling of eye and hand in the sequential movements of children with Developmental Coordination Disorder.
    Wilmut K; Wann JP; Brown JH
    Child Care Health Dev; 2006 Nov; 32(6):665-78. PubMed ID: 17018042
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.