BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 9652400)

  • 1. Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose.
    Dominguez H; Rollin C; Guyonvarch A; Guerquin-Kern JL; Cocaign-Bousquet M; Lindley ND
    Eur J Biochem; 1998 May; 254(1):96-102. PubMed ID: 9652400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative metabolic flux analysis of lysine-producing Corynebacterium glutamicum cultured on glucose or fructose.
    Kiefer P; Heinzle E; Zelder O; Wittmann C
    Appl Environ Microbiol; 2004 Jan; 70(1):229-39. PubMed ID: 14711646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo.
    Moritz B; Striegel K; De Graaf AA; Sahm H
    Eur J Biochem; 2000 Jun; 267(12):3442-52. PubMed ID: 10848959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathway analysis and metabolic engineering in Corynebacterium glutamicum.
    Sahm H; Eggeling L; de Graaf AA
    Biol Chem; 2000; 381(9-10):899-910. PubMed ID: 11076021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source.
    Wittmann C; Kiefer P; Zelder O
    Appl Environ Microbiol; 2004 Dec; 70(12):7277-87. PubMed ID: 15574927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources.
    Becker J; Klopprogge C; Zelder O; Heinzle E; Wittmann C
    Appl Environ Microbiol; 2005 Dec; 71(12):8587-96. PubMed ID: 16332851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 13C-NMR studies of Corynebacterium melassecola metabolic pathways.
    Rollin C; Morgant V; Guyonvarch A; Guerquin-Kern JL
    Eur J Biochem; 1995 Jan; 227(1-2):488-93. PubMed ID: 7851427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of CO
    Krüger A; Wiechert J; Gätgens C; Polen T; Mahr R; Frunzke J
    J Bacteriol; 2019 Oct; 201(20):. PubMed ID: 31358612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes of pentose phosphate pathway flux in vivo in Corynebacterium glutamicum during leucine-limited batch cultivation as determined from intracellular metabolite concentration measurements.
    Moritz B; Striegel K; de Graaf AA; Sahm H
    Metab Eng; 2002 Oct; 4(4):295-305. PubMed ID: 12646324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic Redirection of Carbon Flux between Glycolysis and Pentose Phosphate Pathway Using an Oxygen-Responsive Metabolic Switch in
    Kobayashi S; Kawaguchi H; Shirai T; Ninomiya K; Takahashi K; Kondo A; Tsuge Y
    ACS Synth Biol; 2020 Apr; 9(4):814-826. PubMed ID: 32202411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of reversible reactions on isotope label redistribution--analysis of the pentose phosphate pathway.
    Follstad BD; Stephanopoulos G
    Eur J Biochem; 1998 Mar; 252(3):360-71. PubMed ID: 9546650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response of the central metabolism in Corynebacterium glutamicum to the use of an NADH-dependent glutamate dehydrogenase.
    Marx A; Eikmanns BJ; Sahm H; de Graaf AA; Eggeling L
    Metab Eng; 1999 Jan; 1(1):35-48. PubMed ID: 10935753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of glucose, fructose and sucrose as carbon sources on kinetics and stoichiometry of lysine production by Corynebacterium glutamicum.
    Kiefer P; Heinzle E; Wittmann C
    J Ind Microbiol Biotechnol; 2002 Jun; 28(6):338-43. PubMed ID: 12032807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genealogy profiling through strain improvement by using metabolic network analysis: metabolic flux genealogy of several generations of lysine-producing corynebacteria.
    Wittmann C; Heinzle E
    Appl Environ Microbiol; 2002 Dec; 68(12):5843-59. PubMed ID: 12450803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome.
    Krömer JO; Sorgenfrei O; Klopprogge K; Heinzle E; Wittmann C
    J Bacteriol; 2004 Mar; 186(6):1769-84. PubMed ID: 14996808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032.
    Moon MW; Kim HJ; Oh TK; Shin CS; Lee JS; Kim SJ; Lee JK
    FEMS Microbiol Lett; 2005 Mar; 244(2):259-66. PubMed ID: 15766777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. l-Lysine production independent of the oxidative pentose phosphate pathway by Corynebacterium glutamicum with the Streptococcus mutans gapN gene.
    Takeno S; Hori K; Ohtani S; Mimura A; Mitsuhashi S; Ikeda M
    Metab Eng; 2016 Sep; 37():1-10. PubMed ID: 27044449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X
    Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum.
    Becker J; Klopprogge C; Wittmann C
    Microb Cell Fact; 2008 Mar; 7():8. PubMed ID: 18339202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.