These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 9652400)
1. Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose. Dominguez H; Rollin C; Guyonvarch A; Guerquin-Kern JL; Cocaign-Bousquet M; Lindley ND Eur J Biochem; 1998 May; 254(1):96-102. PubMed ID: 9652400 [TBL] [Abstract][Full Text] [Related]
2. Comparative metabolic flux analysis of lysine-producing Corynebacterium glutamicum cultured on glucose or fructose. Kiefer P; Heinzle E; Zelder O; Wittmann C Appl Environ Microbiol; 2004 Jan; 70(1):229-39. PubMed ID: 14711646 [TBL] [Abstract][Full Text] [Related]
3. Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo. Moritz B; Striegel K; De Graaf AA; Sahm H Eur J Biochem; 2000 Jun; 267(12):3442-52. PubMed ID: 10848959 [TBL] [Abstract][Full Text] [Related]
4. Pathway analysis and metabolic engineering in Corynebacterium glutamicum. Sahm H; Eggeling L; de Graaf AA Biol Chem; 2000; 381(9-10):899-910. PubMed ID: 11076021 [TBL] [Abstract][Full Text] [Related]
5. Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source. Wittmann C; Kiefer P; Zelder O Appl Environ Microbiol; 2004 Dec; 70(12):7277-87. PubMed ID: 15574927 [TBL] [Abstract][Full Text] [Related]
6. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation. Matsuoka Y; Shimizu K J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830 [TBL] [Abstract][Full Text] [Related]
7. Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Becker J; Klopprogge C; Zelder O; Heinzle E; Wittmann C Appl Environ Microbiol; 2005 Dec; 71(12):8587-96. PubMed ID: 16332851 [TBL] [Abstract][Full Text] [Related]
10. Changes of pentose phosphate pathway flux in vivo in Corynebacterium glutamicum during leucine-limited batch cultivation as determined from intracellular metabolite concentration measurements. Moritz B; Striegel K; de Graaf AA; Sahm H Metab Eng; 2002 Oct; 4(4):295-305. PubMed ID: 12646324 [TBL] [Abstract][Full Text] [Related]
11. Automatic Redirection of Carbon Flux between Glycolysis and Pentose Phosphate Pathway Using an Oxygen-Responsive Metabolic Switch in Kobayashi S; Kawaguchi H; Shirai T; Ninomiya K; Takahashi K; Kondo A; Tsuge Y ACS Synth Biol; 2020 Apr; 9(4):814-826. PubMed ID: 32202411 [TBL] [Abstract][Full Text] [Related]
12. Effect of reversible reactions on isotope label redistribution--analysis of the pentose phosphate pathway. Follstad BD; Stephanopoulos G Eur J Biochem; 1998 Mar; 252(3):360-71. PubMed ID: 9546650 [TBL] [Abstract][Full Text] [Related]
13. Response of the central metabolism in Corynebacterium glutamicum to the use of an NADH-dependent glutamate dehydrogenase. Marx A; Eikmanns BJ; Sahm H; de Graaf AA; Eggeling L Metab Eng; 1999 Jan; 1(1):35-48. PubMed ID: 10935753 [TBL] [Abstract][Full Text] [Related]
14. Influence of glucose, fructose and sucrose as carbon sources on kinetics and stoichiometry of lysine production by Corynebacterium glutamicum. Kiefer P; Heinzle E; Wittmann C J Ind Microbiol Biotechnol; 2002 Jun; 28(6):338-43. PubMed ID: 12032807 [TBL] [Abstract][Full Text] [Related]
15. Genealogy profiling through strain improvement by using metabolic network analysis: metabolic flux genealogy of several generations of lysine-producing corynebacteria. Wittmann C; Heinzle E Appl Environ Microbiol; 2002 Dec; 68(12):5843-59. PubMed ID: 12450803 [TBL] [Abstract][Full Text] [Related]
16. In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. Krömer JO; Sorgenfrei O; Klopprogge K; Heinzle E; Wittmann C J Bacteriol; 2004 Mar; 186(6):1769-84. PubMed ID: 14996808 [TBL] [Abstract][Full Text] [Related]
17. Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032. Moon MW; Kim HJ; Oh TK; Shin CS; Lee JS; Kim SJ; Lee JK FEMS Microbiol Lett; 2005 Mar; 244(2):259-66. PubMed ID: 15766777 [TBL] [Abstract][Full Text] [Related]
18. l-Lysine production independent of the oxidative pentose phosphate pathway by Corynebacterium glutamicum with the Streptococcus mutans gapN gene. Takeno S; Hori K; Ohtani S; Mimura A; Mitsuhashi S; Ikeda M Metab Eng; 2016 Sep; 37():1-10. PubMed ID: 27044449 [TBL] [Abstract][Full Text] [Related]
19. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli. Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031 [TBL] [Abstract][Full Text] [Related]