These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 96526)

  • 1. Thermorestoration of mutagenic radiation damage in bacterial spores.
    Tanooka H
    Science; 1978 Jun; 200(4349):1493-4. PubMed ID: 96526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen effect on mutagenic ionizing radiation damage in Bacillus subtilis spores of DNA polymerase I-proficient and -deficient strains.
    Tanooka H
    Radiat Res; 1980 Feb; 81(2):319-22. PubMed ID: 6767265
    [No Abstract]   [Full Text] [Related]  

  • 3. Multifactorial resistance of Bacillus subtilis spores to high-energy proton radiation: role of spore structural components and the homologous recombination and non-homologous end joining DNA repair pathways.
    Moeller R; Reitz G; Li Z; Klein S; Nicholson WL
    Astrobiology; 2012 Nov; 12(11):1069-77. PubMed ID: 23088412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals.
    Setlow P
    J Appl Microbiol; 2006 Sep; 101(3):514-25. PubMed ID: 16907802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [MIR experiment for radiation biology effect: rpsL mutation induction in B. subtilis spore].
    Yatagai F; Saito T; Takahashi A; Fujie A; Nagaoka S; Sato M; Ohnishi T
    Biol Sci Space; 1998 Nov; 12(3):208-9. PubMed ID: 12512534
    [No Abstract]   [Full Text] [Related]  

  • 6. Resistance of Bacillus subtilis spore DNA to lethal ionizing radiation damage relies primarily on spore core components and DNA repair, with minor effects of oxygen radical detoxification.
    Moeller R; Raguse M; Reitz G; Okayasu R; Li Z; Klein S; Setlow P; Nicholson WL
    Appl Environ Microbiol; 2014 Jan; 80(1):104-9. PubMed ID: 24123749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutagenic effect of tritiated water on spores of Bacillus subtilis.
    Tanooka H; Munakata N
    Radiat Res; 1978 Mar; 73(3):581-4. PubMed ID: 416460
    [No Abstract]   [Full Text] [Related]  

  • 8. Effects of forespore-specific overexpression of apurinic/apyrimidinic endonuclease Nfo on the DNA-damage resistance properties of Bacillus subtilis spores.
    Barraza-Salas M; Ibarra-Rodríguez JR; Mellado SJ; Salas-Pacheco JM; Setlow P; Pedraza-Reyes M
    FEMS Microbiol Lett; 2010 Jan; 302(2):159-65. PubMed ID: 19930460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutation induction with UV- and X-radiations in spores and vegetative cells of Bacillus subtilis.
    Tanooka H; Munakata N; Kitahara S
    Mutat Res; 1978 Feb; 49(2):179-86. PubMed ID: 415232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects of a DNA-synthesis mutation on UV-induced mutation yields in vegetative cells and spores of Bacillus subtilis.
    Sadaie Y; Narui K; Kada T
    Photochem Photobiol; 1977 Aug; 26(2):161-2. PubMed ID: 410042
    [No Abstract]   [Full Text] [Related]  

  • 11. Dark repair of DNA containing "spore photoproduct" in Bacillus subtilis.
    Munakata N; Rupert CS
    Mol Gen Genet; 1974 May; 130(3):239-50. PubMed ID: 4210681
    [No Abstract]   [Full Text] [Related]  

  • 12. Effects of DNA-polymerase-defective and recombination-deficient mutations on the ultraviolet sensitivity of Bacillus subtilis spores.
    Munakata N; Rupert CS
    Mutat Res; 1975 Feb; 27(2):157-69. PubMed ID: 165401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Responses of Bacillus subtilis spores to space environment: results from experiments in space.
    Horneck G
    Orig Life Evol Biosph; 1993 Feb; 23(1):37-52. PubMed ID: 8433836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionizing radiation-initiated degradation of DNA in germinating spores.
    Cyr WH; Pollard EC
    Radiat Res; 1972 Nov; 52(2):409-18. PubMed ID: 4629963
    [No Abstract]   [Full Text] [Related]  

  • 15. Evidence for the monomerization of spore photoproduct to two thymines by the light-independent "spore repair" process in Bacillus subtilis.
    Van Wang TC; Rupert CS
    Photochem Photobiol; 1977 Jan; 25(1):123-7. PubMed ID: 403531
    [No Abstract]   [Full Text] [Related]  

  • 16. Small, acid-soluble proteins bound to DNA protect Bacillus subtilis spores from being killed by freeze-drying.
    Fairhead H; Setlow B; Waites WM; Setlow P
    Appl Environ Microbiol; 1994 Jul; 60(7):2647-9. PubMed ID: 8074535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Action spectra for survival and spore photoproduct formation of Bacillus subtilis irradiated with short-wavelength (200-300 nm) UV at atmospheric pressure and in vacuo.
    Lindberg C; Horneck G
    J Photochem Photobiol B; 1991 Oct; 11(1):69-80. PubMed ID: 1791495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of DNA repair by nonhomologous-end joining in Bacillus subtilis spore resistance to extreme dryness, mono- and polychromatic UV, and ionizing radiation.
    Moeller R; Stackebrandt E; Reitz G; Berger T; Rettberg P; Doherty AJ; Horneck G; Nicholson WL
    J Bacteriol; 2007 Apr; 189(8):3306-11. PubMed ID: 17293412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiation inactivation and recombination repair in Bacillus subtilis spores.
    Sadaie Y; Kada T
    Mutat Res; 1973 Jan; 17(1):138-41. PubMed ID: 4630059
    [No Abstract]   [Full Text] [Related]  

  • 20. [[Analysis of synergistic effects during thermoradiation exposure of bacteriophage T4 and Bacillus subtilis spores].
    Komarov VP; Pegin VG
    Radiobiologiia; 1987; 27(4):449-54. PubMed ID: 3114821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.