These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 9652953)
1. Kinetic and thermodynamic principles determining the structural design of ATP-producing systems. Stephani A; Heinrich R Bull Math Biol; 1998 May; 60(3):505-43. PubMed ID: 9652953 [TBL] [Abstract][Full Text] [Related]
2. Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems. Ebenhöh O; Heinrich R Bull Math Biol; 2001 Jan; 63(1):21-55. PubMed ID: 11146883 [TBL] [Abstract][Full Text] [Related]
3. Optimal stoichiometric designs of ATP-producing systems as determined by an evolutionary algorithm. Stephani A; Nuño JC; Heinrich R J Theor Biol; 1999 Jul; 199(1):45-61. PubMed ID: 10419759 [TBL] [Abstract][Full Text] [Related]
4. Theoretical approaches to the evolutionary optimization of glycolysis: thermodynamic and kinetic constraints. Heinrich R; Montero F; Klipp E; Waddell TG; Meléndez-Hevia E Eur J Biochem; 1997 Jan; 243(1-2):191-201. PubMed ID: 9030739 [TBL] [Abstract][Full Text] [Related]
5. Evolutionary optimization of enzyme kinetic parameters; effect of constraints. Klipp E; Heinrich R J Theor Biol; 1994 Dec; 171(3):309-23. PubMed ID: 7869733 [TBL] [Abstract][Full Text] [Related]
6. [Interaction of the Embden-Meyerhof pathway and hexose monophosphate shunt in erythrocytes]. Ataullakhanov FI; Buravtsev VN; Zhabotinskiĩ AM; Norina SB; Pichugin AV Biokhimiia; 1981 Apr; 46(4):723-31. PubMed ID: 7284486 [TBL] [Abstract][Full Text] [Related]
7. Transitions between alternate ATP-producing and ATP-consuming stationary states in a reconstituted enzyme system containing phosphofructokinase. Eschrich K; Schellenberger W; Hofmann E Acta Biol Med Ger; 1982; 41(5):415-24. PubMed ID: 6215809 [TBL] [Abstract][Full Text] [Related]
8. Kinetic modeling can describe in vivo glycolysis in Entamoeba histolytica. Saavedra E; Marín-Hernández A; Encalada R; Olivos A; Mendoza-Hernández G; Moreno-Sánchez R FEBS J; 2007 Sep; 274(18):4922-40. PubMed ID: 17824961 [TBL] [Abstract][Full Text] [Related]
9. Adenine and adenosine salvage pathways in erythrocytes and the role of S-adenosylhomocysteine hydrolase. A theoretical study using elementary flux modes. Schuster S; Kenanov D FEBS J; 2005 Oct; 272(20):5278-90. PubMed ID: 16218958 [TBL] [Abstract][Full Text] [Related]
10. Rapid simulation and analysis of isotopomer distributions using constraints based on enzyme mechanisms: an example from HT29 cancer cells. Selivanov VA; Meshalkina LE; Solovjeva ON; Kuchel PW; Ramos-Montoya A; Kochetov GA; Lee PW; Cascante M Bioinformatics; 2005 Sep; 21(17):3558-64. PubMed ID: 16002431 [TBL] [Abstract][Full Text] [Related]
11. The role of metabolic memory in the ATP paradox and energy homeostasis. Aledo JC; Jiménez-Rivérez S; Cuesta-Munoz A; Romero JM FEBS J; 2008 Nov; 275(21):5332-42. PubMed ID: 18803663 [TBL] [Abstract][Full Text] [Related]
12. [Mathematical modelling of glycolysis and of adenine nucleotide metabolism of human erythrocytes. II. Simulation of adenine nucleotide breakdown following glucose depletion]. Schauer M; Heinrich R; Rapoport SM Acta Biol Med Ger; 1981; 40(12):1683-97. PubMed ID: 7345824 [TBL] [Abstract][Full Text] [Related]
13. [Quantitative model of human erythrocyte glycolysis. I. Relationship between the stationary rate of glycolysis and the ATP concentration]. Ataullakhanov FI; Vitvitskiĭ VM; Zhabotinskiĭ AM; Kholodenko BN; Erlikh LI Biofizika; 1977; 22(3):483-8. PubMed ID: 142521 [TBL] [Abstract][Full Text] [Related]
14. [Stabilization of the relative concentration of ATP and invariants in the regulation of erythrocyte energy metabolism]. Kholodenko BN Biofizika; 1980; 25(2):258-64. PubMed ID: 6445212 [TBL] [Abstract][Full Text] [Related]
15. Kinetic modeling of ATP synthesis by ATP synthase and its mechanistic implications. Nath S; Jain S Biochem Biophys Res Commun; 2000 Jun; 272(3):629-33. PubMed ID: 10860805 [TBL] [Abstract][Full Text] [Related]
16. Mathematical simulation of membrane processes and metabolic fluxes of the pancreatic beta-cell. Diederichs F Bull Math Biol; 2006 Oct; 68(7):1779-818. PubMed ID: 16832733 [TBL] [Abstract][Full Text] [Related]
17. A kinetic model for the interaction of energy metabolism and osmotic states of human erythrocytes. Analysis of the stationary "in vivo" state and of time dependent variations under blood preservation conditions. Werner A; Heinrich R Biomed Biochim Acta; 1985; 44(2):185-212. PubMed ID: 4004830 [TBL] [Abstract][Full Text] [Related]