BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 9653152)

  • 1. Molecular population genetics of the Arabidopsis CAULIFLOWER regulatory gene: nonneutral evolution and naturally occurring variation in floral homeotic function.
    Purugganan MD; Suddith JI
    Proc Natl Acad Sci U S A; 1998 Jul; 95(14):8130-4. PubMed ID: 9653152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterns of molecular evolution among paralogous floral homeotic genes.
    Lawton-Rauh AL; Buckler ES; Purugganan MD
    Mol Biol Evol; 1999 Aug; 16(8):1037-45. PubMed ID: 10474900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular population genetics of floral homeotic loci. Departures from the equilibrium-neutral model at the APETALA3 and PISTILLATA genes of Arabidopsis thaliana.
    Purugganan MD; Suddith JI
    Genetics; 1999 Feb; 151(2):839-48. PubMed ID: 9927474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contrasting evolutionary forces in the Arabidopsis thaliana floral developmental pathway.
    Olsen KM; Womack A; Garrett AR; Suddith JI; Purugganan MD
    Genetics; 2002 Apr; 160(4):1641-50. PubMed ID: 11973317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular basis of the cauliflower phenotype in Arabidopsis.
    Kempin SA; Savidge B; Yanofsky MF
    Science; 1995 Jan; 267(5197):522-5. PubMed ID: 7824951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular population genetics of redundant floral-regulatory genes in Arabidopsis thaliana.
    Moore RC; Grant SR; Purugganan MD
    Mol Biol Evol; 2005 Jan; 22(1):91-103. PubMed ID: 15371526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A genetic framework for floral patterning.
    Parcy F; Nilsson O; Busch MA; Lee I; Weigel D
    Nature; 1998 Oct; 395(6702):561-6. PubMed ID: 9783581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution in action: following function in duplicated floral homeotic genes.
    Causier B; Castillo R; Zhou J; Ingram R; Xue Y; Schwarz-Sommer Z; Davies B
    Curr Biol; 2005 Aug; 15(16):1508-12. PubMed ID: 16111944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Duplication of the Brassica oleracea APETALA1 floral homeotic gene and the evolution of domesticated cauliflower.
    Lowman AC; Purugganan MD
    J Hered; 1999; 90(5):514-20. PubMed ID: 10544496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Floral homeotic gene expression defines developmental arrest stages in Brassica oleracea L. vars. botrytis and italica.
    Carr SM; Irish VF
    Planta; 1997; 201(2):179-88. PubMed ID: 9084216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and molecular characterization of ZAG1, the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS.
    Schmidt RJ; Veit B; Mandel MA; Mena M; Hake S; Yanofsky MF
    Plant Cell; 1993 Jul; 5(7):729-37. PubMed ID: 8103379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct regulation of the floral homeotic APETALA1 gene by APETALA3 and PISTILLATA in Arabidopsis.
    Sundström JF; Nakayama N; Glimelius K; Irish VF
    Plant J; 2006 May; 46(4):593-600. PubMed ID: 16640596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The molecular population genetics of shoot development in Arabidopsis thaliana.
    Shepard KA
    Genetica; 2007 Jan; 129(1):19-36. PubMed ID: 16900315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS.
    Riechmann JL; Krizek BA; Meyerowitz EM
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4793-8. PubMed ID: 8643482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1.
    Mandel MA; Gustafson-Brown C; Savidge B; Yanofsky MF
    Nature; 1992 Nov; 360(6401):273-7. PubMed ID: 1359429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Arabidopsis floral meristem identity genes AP1, AGL24 and SVP directly repress class B and C floral homeotic genes.
    Gregis V; Sessa A; Dorca-Fornell C; Kater MM
    Plant J; 2009 Nov; 60(4):626-37. PubMed ID: 19656343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple interactions amongst floral homeotic MADS box proteins.
    Davies B; Egea-Cortines M; de Andrade Silva E; Saedler H; Sommer H
    EMBO J; 1996 Aug; 15(16):4330-43. PubMed ID: 8861961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. INCOMPOSITA: a MADS-box gene controlling prophyll development and floral meristem identity in Antirrhinum.
    Masiero S; Li MA; Will I; Hartmann U; Saedler H; Huijser P; Schwarz-Sommer Z; Sommer H
    Development; 2004 Dec; 131(23):5981-90. PubMed ID: 15539492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intercellular transport of epidermis-expressed MADS domain transcription factors and their effect on plant morphology and floral transition.
    Urbanus SL; Martinelli AP; Dinh QD; Aizza LC; Dornelas MC; Angenent GC; Immink RG
    Plant J; 2010 Jul; 63(1):60-72. PubMed ID: 20374529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Evolution and development of the flower].
    Vialette-Guiraud A; Vandenbussche M
    Biol Aujourdhui; 2012; 206(1):47-55. PubMed ID: 22463995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.