BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 9653807)

  • 1. The renin-angiotensin system and the effect of propranolol upon the cerebral cortical and hypothalamic circulation in hypoxia.
    Olteanu A; Grosu L; Vlasie N; Pavel T; Barabas E; Baciu I
    Rom J Physiol; 1997; 34(1-4):25-33. PubMed ID: 9653807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renin-angiotensin system inhibition in conscious dogs during acute hypoxemia. Effects on systemic hemodynamics, regional blood flows, and tissue metabolism.
    Liang CS; Gavras H
    J Clin Invest; 1978 Nov; 62(5):961-70. PubMed ID: 711860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of ethyl apovincaminate on cerebral circulation of dogs under normal conditions and in arterial hypoxia.
    Bencsáth P; Debreczeni L; Takács L
    Arzneimittelforschung; 1976; 26(10a):1920-3. PubMed ID: 1037216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermittent hypoxia increases arterial blood pressure in humans through a Renin-Angiotensin system-dependent mechanism.
    Foster GE; Hanly PJ; Ahmed SB; Beaudin AE; Pialoux V; Poulin MJ
    Hypertension; 2010 Sep; 56(3):369-77. PubMed ID: 20625082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of angiotensin II type 1 receptor blocker, candesartan, and beta 1 adrenoceptor blocker, atenolol, on brain damage in ischemic stroke.
    Saad MA; Abbas AM; Boshra V; Elkhateeb M; El Aal IA
    Acta Physiol Hung; 2010 Jun; 97(2):159-71. PubMed ID: 20511125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral blood flow, cerebrovascular resistance, cerebral metabolic rate of oxygen and intracranial pressure during and after severe prolonged arterial hypoxia in dogs. The role of dopamine in the deep hypoxic state.
    Ekström-Jodal B; Elfverson J; von Essen C
    Acta Neurol Scand; 1979 Jul; 60(1):36-49. PubMed ID: 495041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebral blood flow, cerebrovascular resistance and cerebral metabolic rate of oxygen in severe arterial hypoxia in dogs.
    Ekström-Jodal B; Elfverson J; von Essen C
    Acta Neurol Scand; 1979 Jul; 60(1):26-35. PubMed ID: 495040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of renin-angiotensin system blockade on visceral blood flow during and after thoracic aortic cross-clamping.
    Joob AW; Harman PK; Kaiser DL; Kron IL
    J Thorac Cardiovasc Surg; 1986 Mar; 91(3):411-8. PubMed ID: 3005777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the adrenergic beta receptor blocker propranolol on the dilatation of cerebrocortical vessels evoked by arterial hypoxia.
    Dóra E; Kovách AG
    Acta Physiol Hung; 1984; 63(1):35-41. PubMed ID: 6331065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of angiotensin-converting enzyme inhibitors on cerebral vascular structure in chronic hypertension.
    Baumbach GL; Chillon JM
    J Hypertens Suppl; 2000 May; 18(1):S7-11. PubMed ID: 10939784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of renin on brain arterioles and cerebral blood flow in rabbits.
    Haberl RL; Decker-Hermann PJ; Hermann K
    J Cereb Blood Flow Metab; 1996 Jul; 16(4):714-9. PubMed ID: 8964812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of nitroglycerin and propranolol on the distribution of transmural myocardial blood flow during ischemia in the absence of hemodynamic changes in the unanesthetized dog.
    Swain JL; Parker JP; McHale PA; Greenfield JC
    J Clin Invest; 1979 May; 63(5):947-53. PubMed ID: 109467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endogenous opioid mechanisms in hypothalamic blood flow autoregulation during haemorrhagic hypotension and angiotensin-induced acute hypertension in cats.
    Komjáti K; Velkei-Harvich M; Tóth J; Dallos G; Nyáry I; Sándor P
    Acta Physiol Scand; 1996 May; 157(1):53-61. PubMed ID: 8735654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regional hypoxic cerebral vasodilation facilitated by diameter changes primarily in anterior versus posterior circulation.
    Mikhail Kellawan J; Harrell JW; Roldan-Alzate A; Wieben O; Schrage WG
    J Cereb Blood Flow Metab; 2017 Jun; 37(6):2025-2034. PubMed ID: 27406213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors affecting the cerebrovascular response to noradrenaline in the dog.
    James IM; Macdonell L
    Br J Pharmacol; 1975 Jun; 54(2):129-43. PubMed ID: 1148504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effects of hyperoxia and hypoxia on cerebral circulation and intracranial pressure].
    Gu ZZ
    Sheng Li Xue Bao; 1993 Oct; 45(5):415-22. PubMed ID: 8146664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autoregulation of the regional cortical and thalamic cerebral blood flow in cats.
    Vlahov V; Bacracheva N
    Arch Int Pharmacodyn Ther; 1987 Sep; 289(1):93-105. PubMed ID: 3435209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of hypoxia and beta 2-agonists on the activity of the renin-angiotensin system in normal subjects.
    Millar EA; Angus RM; Nally JE; Clayton R; Thomson NC
    Clin Sci (Lond); 1995 Sep; 89(3):273-6. PubMed ID: 7493423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the local renin-angiotensin system in the autoregulation of the cerebral circulation.
    Paulson OB; Waldemar G
    Blood Vessels; 1991; 28(1-3):231-5. PubMed ID: 2001474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propranolol protection in acute renal failure.
    Klein LA
    Invest Urol; 1978 Mar; 15(5):401-3. PubMed ID: 640802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.