BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 9654063)

  • 1. Oxygen exchange with water in heme-oxo intermediates during H2O2-driven oxygen incorporation in aromatic hydrocarbons catalyzed by microperoxidase-8.
    Dorovska-Taran V; Posthumus MA; Boeren S; Boersma MG; Teunis CJ; Rietjens IM; Veeger C
    Eur J Biochem; 1998 May; 253(3):659-68. PubMed ID: 9654063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microperoxidase/H2O2-catalyzed aromatic hydroxylation proceeds by a cytochrome-P-450-type oxygen-transfer reaction mechanism.
    Osman AM; Koerts J; Boersma MG; Boeren S; Veeger C; Rietjens IM
    Eur J Biochem; 1996 Aug; 240(1):232-8. PubMed ID: 8797858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microperoxidase 8 catalyzed nitration of phenol by nitrogen dioxide radicals.
    Ricoux R; Boucher JL; Mansuy D; Mahy JP
    Eur J Biochem; 2001 Jul; 268(13):3783-8. PubMed ID: 11432746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The catalase activity of Nalpha-acetyl-microperoxidase-8.
    Jeng WY; Tsai YH; Chuang WJ
    J Pept Res; 2004 Sep; 64(3):104-9. PubMed ID: 15317500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MP8-dependent oxidative dehalogenation: evidence for the direct formation of 1,4-benzoquinone from 4-fluorophenol by a peroxidase-type of reaction pathway.
    Osman AM; Boeren S; Veeger C; Rietjens IM
    Chem Biol Interact; 1997 May; 104(2-3):147-64. PubMed ID: 9212781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The pH dependence of the mechanism of reaction of hydrogen peroxide with a nonaggregating, non-mu-oxo dimer-forming iron (III) porphyrin in water.
    Bruice TC; Zipplies MF; Lee WA
    Proc Natl Acad Sci U S A; 1986 Jul; 83(13):4646-9. PubMed ID: 3460064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covalently modified microperoxidases as heme-peptide models for peroxidases.
    Casella L; De Gioia L; Silvestri GF; Monzani E; Redaelli C; Roncone R; Santagostini L
    J Inorg Biochem; 2000 Apr; 79(1-4):31-40. PubMed ID: 10830844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of iron(II)-nitrosoalkane complexes: a new activity of microperoxidase 8.
    Ricoux R; Boucher JL; Mansuy D; Mahy JP
    Biochem Biophys Res Commun; 2000 Nov; 278(1):217-23. PubMed ID: 11071875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes.
    de Visser SP; Shaik S
    J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous detection of NADPH consumption and H
    Morlock LK; Böttcher D; Bornscheuer UT
    Appl Microbiol Biotechnol; 2018 Jan; 102(2):985-994. PubMed ID: 29150709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Substrate reduction and oxygen activation during microsomal metabolism of quinones].
    Sushkov DG; Rumiantseva GV; Vaĭner LM
    Biokhimiia; 1987 Nov; 52(11):1898-906. PubMed ID: 2830916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of the peptide chain on the kinetics and stability of microperoxidases.
    Spee JH; Boersma MG; Veeger C; Samyn B; Van Beeumen J; Warmerdam G; Canters GW; Van Dongen WM; Rietjens IM
    Eur J Biochem; 1996 Oct; 241(1):215-20. PubMed ID: 8898909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of iron to manganese substitution on microperoxidase 8 catalysed peroxidase and cytochrome P450 type of catalysis.
    Primus JL; Boersma MG; Mandon D; Boeren S; Veeger C; Weiss R; Rietjens IM
    J Biol Inorg Chem; 1999 Jun; 4(3):274-83. PubMed ID: 10439072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-valent intermediates in the reaction of N alpha-acetyl microperoxidase-8 with hydrogen peroxide: models for compounds 0, I and II of horseradish peroxidase.
    Wang JS; Baek HK; Van Wart HE
    Biochem Biophys Res Commun; 1991 Sep; 179(3):1320-4. PubMed ID: 1656947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An evidence of the peroxidase-dependent oxygen transfer from hydrogen peroxide to sulfides.
    Kobayashi S; Nakano M; Goto T; Kimura T; Schaap AP
    Biochem Biophys Res Commun; 1986 Feb; 135(1):166-71. PubMed ID: 3954766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steady-state kinetics of yeast cytochrome c peroxidase catalyzed oxidation of inorganic reductants by hydrogen peroxide.
    Yandell JK; Yonetani T
    Biochim Biophys Acta; 1983 Oct; 748(2):263-70. PubMed ID: 6313061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stereoselectivity of cytochrome P-450c in the formation of naphthalene and anthracene 1,2-oxides.
    van Bladeren PJ; Vyas KP; Sayer JM; Ryan DE; Thomas PE; Levin W; Jerina DM
    J Biol Chem; 1984 Jul; 259(14):8966-73. PubMed ID: 6430894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does P450-type catalysis proceed through a peroxo-iron intermediate? A review of studies with microperoxidase.
    Veeger C
    J Inorg Biochem; 2002 Jul; 91(1):35-45. PubMed ID: 12121760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modified microperoxidases exhibit different reactivity towards phenolic substrates.
    Dallacosta C; Casella L; Monzani E
    Chembiochem; 2004 Dec; 5(12):1692-9. PubMed ID: 15532028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stopped-flow kinetic study of the H2O2 oxidation of substrates catalyzed by microperoxidase-8.
    Yeh HC; Wang JS; Su YO; Lin WY
    J Biol Inorg Chem; 2001 Oct; 6(8):770-7. PubMed ID: 11713684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.