These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 9654363)

  • 21. Temporal profiles of the in vitro phosphorylation rate and immunocontent of glial fibrillary acidic protein (GFAP) after kainic acid-induced lesions in area CA1 of the rat hippocampus: demonstration of a novel phosphoprotein associated with gliosis.
    Lenz G; Manozzo L; Gottardo S; Achaval M; Salbego C; Rodnight R
    Brain Res; 1997 Aug; 764(1-2):188-96. PubMed ID: 9295209
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking.
    Hughes EG; Maguire JL; McMinn MT; Scholz RE; Sutherland ML
    Brain Res Mol Brain Res; 2004 May; 124(2):114-23. PubMed ID: 15135219
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alteration of glial fibrillary acidic proteins immunoreactivity in astrocytes of the spinal cord diabetic rats.
    Afsari ZH; Renno WM; Abd-El-Basset E
    Anat Rec (Hoboken); 2008 Apr; 291(4):390-9. PubMed ID: 18360886
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expression of vimentin and glial fibrillary acidic protein in the developing rat spinal cord: an immunocytochemical study of the spinal cord glial system.
    Oudega M; Marani E
    J Anat; 1991 Dec; 179():97-114. PubMed ID: 1817147
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of glial cell line-derived neurotrophic factor intrathecal injection on spinal dorsal horn glial fibrillary acidic protein expression in a rat model of neuropathic pain.
    Guo J; Jia D; Jin B; Xu F; Yuan X; Shen H
    Int J Neurosci; 2012 Jul; 122(7):388-94. PubMed ID: 22416765
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Corticosteroids reduce glial fibrillary acidic protein expression in response to spinal cord injury in a fetal rat model of dysraphism.
    Melo-Filho AA; Weber Guimarães Barreto M; Capelli Nassr AC; Rogério F; Langone F; Pereira LA; Sbragia L
    Pediatr Neurosurg; 2009; 45(3):198-204. PubMed ID: 19494564
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reverse transport of glutamate during depolarization in immature hippocampal slices.
    Katsumori H; Baldwin RA; Wasterlain CG
    Brain Res; 1999 Feb; 819(1-2):160-4. PubMed ID: 10082873
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphorylation in vitro of glial fibrillary acidic protein is increased in rat hippocampus by administration of 2,5-hexanedione.
    Pereira ME; Gonçalves CA; Rodnight R
    Brain Res; 1994 Sep; 656(2):417-9. PubMed ID: 7820604
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intracerebroventricular administration of okadaic acid induces hippocampal glucose uptake dysfunction and tau phosphorylation.
    Broetto N; Hansen F; Brolese G; Batassini C; Lirio F; Galland F; Dos Santos JP; Dutra MF; Gonçalves CA
    Brain Res Bull; 2016 Jun; 124():136-43. PubMed ID: 27108544
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GFAP mRNA positive glia acutely isolated from rat hippocampus predominantly show complex current patterns.
    Zhou M; Schools GP; Kimelberg HK
    Brain Res Mol Brain Res; 2000 Mar; 76(1):121-31. PubMed ID: 10719222
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glutamate-mediated influx of extracellular Ca2+ is coupled with reactive oxygen species generation in cultured hippocampal neurons but not in astrocytes.
    Kahlert S; Zündorf G; Reiser G
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):262-71. PubMed ID: 15578732
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanisms of glutamate release in the rat spinal cord slices during metabolic inhibition.
    Sundström E; Mo LL
    J Neurotrauma; 2002 Feb; 19(2):257-66. PubMed ID: 11893026
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ethanol stimulates ROS generation by mitochondria through Ca2+ mobilization and increases GFAP content in rat hippocampal astrocytes.
    González A; Pariente JA; Salido GM
    Brain Res; 2007 Oct; 1178():28-37. PubMed ID: 17888892
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Immunoblot identification of glial fibrillary acidic protein in rat sciatic nerve, brain, and spinal cord during development.
    Noetzel MJ; Agrawal HC
    Neurochem Res; 1985 Jun; 10(6):737-53. PubMed ID: 4033869
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of FK506-mediated protection in an organotypic model of spinal cord damage: heat shock protein 70 levels are modulated in microglial cells.
    Guzmán-Lenis MS; Vallejo C; Navarro X; Casas C
    Neuroscience; 2008 Jul; 155(1):104-13. PubMed ID: 18577426
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phosphorylation of the glial fibrillary acidic protein.
    Noetzel MJ
    J Neurosci Res; 1990 Oct; 27(2):184-92. PubMed ID: 2254963
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glutamate receptor-mediated calcium responses in acutely isolated hippocampal astrocytes.
    Cai Z; Kimelberg HK
    Glia; 1997 Dec; 21(4):380-9. PubMed ID: 9419013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hyperhomocysteinemia selectively alters expression and stoichiometry of intermediate filament and induces glutamate- and calcium-mediated mechanisms in rat brain during development.
    Loureiro SO; Heimfarth L; Pelaez Pde L; Lacerda BA; Vidal LF; Soska A; Santos NG; Andrade C; Tagliari B; Scherer EB; Guma FT; Wyse AT; Pessoa-Pureur R
    Int J Dev Neurosci; 2010 Feb; 28(1):21-30. PubMed ID: 19822200
    [TBL] [Abstract][Full Text] [Related]  

  • 39. GFAP-positive hippocampal astrocytes in situ respond to glutamatergic neuroligands with increases in [Ca2+]i.
    Porter JT; McCarthy KD
    Glia; 1995 Feb; 13(2):101-12. PubMed ID: 7544323
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hyperammonemia compromises glutamate metabolism and reduces BDNF in the rat hippocampus.
    Galland F; Negri E; Da Ré C; Fróes F; Strapazzon L; Guerra MC; Tortorelli LS; Gonçalves CA; Leite MC
    Neurotoxicology; 2017 Sep; 62():46-55. PubMed ID: 28506823
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.