These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 9654767)

  • 21. [Mathematical model of bursting spike train and its spectrum features].
    Zhang D; Ding H; Ye D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Dec; 27(6):1353-9. PubMed ID: 21374994
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses.
    Song D; Chan RH; Marmarelis VZ; Hampson RE; Deadwyler SA; Berger TW
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1053-66. PubMed ID: 17554824
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An artificial chaotic spiking neuron inspired by spiral ganglion cell: paralleled spike encoding, theoretical analysis, and electronic circuit implementation.
    Torikai H; Nishigami T
    Neural Netw; 2009; 22(5-6):664-73. PubMed ID: 19595567
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The possible role of spike patterns in cortical information processing.
    Tiesinga PH; Toups JV
    J Comput Neurosci; 2005 Jun; 18(3):275-86. PubMed ID: 15830164
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spike train statistics and dynamics with synaptic input from any renewal process: a population density approach.
    Ly C; Tranchina D
    Neural Comput; 2009 Feb; 21(2):360-96. PubMed ID: 19431264
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Apamin-induced irregular firing in vitro and irregular single-spike firing observed in vivo in dopamine neurons is chaotic.
    Lovejoy LP; Shepard PD; Canavier CC
    Neuroscience; 2001; 104(3):829-40. PubMed ID: 11440813
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Irregularity in neocortical spike trains: influence of measurement factors and another method of estimation.
    Chelvanayagam DK; Vidyasagar TR
    J Neurosci Methods; 2006 Oct; 157(2):264-73. PubMed ID: 16797077
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Noisy Juxtacellular Stimulation In Vivo Leads to Reliable Spiking and Reveals High-Frequency Coding in Single Neurons.
    Doose J; Doron G; Brecht M; Lindner B
    J Neurosci; 2016 Oct; 36(43):11120-11132. PubMed ID: 27798191
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phase-response curves give the responses of neurons to transient inputs.
    Gutkin BS; Ermentrout GB; Reyes AD
    J Neurophysiol; 2005 Aug; 94(2):1623-35. PubMed ID: 15829595
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interspike interval statistics in the stochastic Hodgkin-Huxley model: coexistence of gamma frequency bursts and highly irregular firing.
    Rowat P
    Neural Comput; 2007 May; 19(5):1215-50. PubMed ID: 17381265
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrate-and-fire neurons driven by correlated stochastic input.
    Salinas E; Sejnowski TJ
    Neural Comput; 2002 Sep; 14(9):2111-55. PubMed ID: 12184845
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Measuring spike pattern reliability with the Lempel-Ziv-distance.
    Christen M; Kohn A; Ott T; Stoop R
    J Neurosci Methods; 2006 Sep; 156(1-2):342-50. PubMed ID: 16584787
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Response variability in balanced cortical networks.
    Lerchner A; Ursta C; Hertz J; Ahmadi M; Ruffiot P; Enemark S
    Neural Comput; 2006 Mar; 18(3):634-59. PubMed ID: 16483411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs.
    Softky WR; Koch C
    J Neurosci; 1993 Jan; 13(1):334-50. PubMed ID: 8423479
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification and continuity of the distributions of burst-length and interspike intervals in the stochastic Morris-Lecar neuron.
    Rowat PF; Greenwood PE
    Neural Comput; 2011 Dec; 23(12):3094-124. PubMed ID: 21919786
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of spike statistics in neuronal systems with continuous attractors or multiple, discrete attractor States.
    Miller P
    Neural Comput; 2006 Jun; 18(6):1268-317. PubMed ID: 16764505
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved similarity measures for small sets of spike trains.
    Naud R; Gerhard F; Mensi S; Gerstner W
    Neural Comput; 2011 Dec; 23(12):3016-69. PubMed ID: 21919785
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of extrinsic inputs and synaptic gains on dynamics of Wendling's neural mass model: A bifurcation analysis.
    Geng S; Zhou W
    J Integr Neurosci; 2016 Dec; 15(4):463-483. PubMed ID: 28077003
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A cross-interval spike train analysis: the correlation between spike generation and temporal integration of doublets.
    Tam DC
    Biol Cybern; 1998 Feb; 78(2):95-106. PubMed ID: 9525036
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neuronal integration mechanisms have little effect on spike auto-correlations of cortical neurons.
    Sakai Y
    Neural Netw; 2001 Nov; 14(9):1145-52. PubMed ID: 11718415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.