These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 965484)
1. Further characterization of NADPH oxidase activity of human polymorphonuclear leukocytes. McPhail LC; DeChatelet LR; Shirley PS J Clin Invest; 1976 Oct; 58(4):774-80. PubMed ID: 965484 [TBL] [Abstract][Full Text] [Related]
2. Comparison of NADH and NADPH oxidase activities in granules isolated from human polymorphonuclear leukocytes with a fluorometric assay. Iverson D; DeChatelet LR; Spitznagel JK; Wang P J Clin Invest; 1977 Feb; 59(2):282-90. PubMed ID: 833275 [TBL] [Abstract][Full Text] [Related]
3. An isotopic assay for NADPH oxidase activity and some characteristics of the enzyme from human polymorphonuclear leukocytes. DeChatelet LR; McPhail LC; Mullikin D; McCall CE J Clin Invest; 1975 Apr; 55(4):714-21. PubMed ID: 235561 [TBL] [Abstract][Full Text] [Related]
4. Studies of cytochrome b-245 translocation in the PMA stimulation of the human neutrophil NADPH-oxidase. Higson FK; Durbin L; Pavlotsky N; Tauber AI J Immunol; 1985 Jul; 135(1):519-24. PubMed ID: 2987348 [TBL] [Abstract][Full Text] [Related]
6. Imaging neutrophil activation: analysis of the translocation and utilization of NAD(P)H-associated autofluorescence during antibody-dependent target oxidation. Liang B; Petty HR J Cell Physiol; 1992 Jul; 152(1):145-56. PubMed ID: 1618916 [TBL] [Abstract][Full Text] [Related]
7. Interactions of antirheumatic drugs with the superoxide generation system of activated human polymorphonuclear leukocytes. Minta JO; Williams MD J Rheumatol; 1986 Jun; 13(3):498-504. PubMed ID: 3016258 [TBL] [Abstract][Full Text] [Related]
8. Exposure of human neutrophils to chemotactic factors potentiates activation of the respiratory burst enzyme. Bender JG; McPhail LC; Van Epps DE J Immunol; 1983 May; 130(5):2316-23. PubMed ID: 6300243 [TBL] [Abstract][Full Text] [Related]
9. Studies on the mechanism of metabolic stimulation in polymorphonuclear leukocytes during phagocytosis. Activators and inhibitors of the granule bound NADPH oxidase. Patriarca P; Dri P; Kakinuma K; Rossi F Mol Cell Biochem; 1976 Sep; 12(3):137-46. PubMed ID: 979961 [TBL] [Abstract][Full Text] [Related]
10. [Enzyme system and coenzymes involved in the energy metabolism of leukocytes. Function and metabolism of polymorphonuclear neutrophils]. Frei J; Aellig A; Nessi P Ann Biol Clin (Paris); 1975; 33(6):459-64. PubMed ID: 5934 [TBL] [Abstract][Full Text] [Related]
11. NAD(P)H oxidase activity in human neutrophils stimulated by phorbol myristate acetate. Suzuki Y; Lehrer RI J Clin Invest; 1980 Dec; 66(6):1409-18. PubMed ID: 6255012 [TBL] [Abstract][Full Text] [Related]
12. Manganese-dependent NADPH oxidation by granulocyte particles. The role of superoxide and the nonphysiological nature of the manganese requirement. Curnutte JT; Karnovsky ML; Babior BM J Clin Invest; 1976 Apr; 57(4):1059-67. PubMed ID: 7574 [TBL] [Abstract][Full Text] [Related]
13. Comparison of subcellular activation of the human neutrophil NADPH-oxidase by arachidonic acid, sodium dodecyl sulfate (SDS), and phorbol myristate acetate (PMA). Cox JA; Jeng AY; Blumberg PM; Tauber AI J Immunol; 1987 Mar; 138(6):1884-8. PubMed ID: 3102604 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of NADPH-oxidase activity in human polymorphonuclear neutrophils by lipophilic ascorbic acid derivatives. Schmid E; Figala V; Ullrich V Mol Pharmacol; 1994 May; 45(5):815-25. PubMed ID: 8190099 [TBL] [Abstract][Full Text] [Related]
15. Beta-thromboglobulin and polymorphonuclear leukocytes activation. (Effects on chemiluminescence, release of membrane bound calcium, NADPH-oxidase activity and membrane fluidity). Allegrezza-Giulietti A; Serretti R; Beccerica E; Ferretti G; Cervini C Biochem Int; 1991 May; 24(2):273-9. PubMed ID: 1834061 [TBL] [Abstract][Full Text] [Related]
16. Phorbol myristate acetate mediates redistribution of protein kinase C in human neutrophils: potential role in the activation of the respiratory burst enzyme. Wolfson M; McPhail LC; Nasrallah VN; Snyderman R J Immunol; 1985 Sep; 135(3):2057-62. PubMed ID: 3160785 [TBL] [Abstract][Full Text] [Related]
17. The energy metabolism of the leukocyte. IX. Changes in the concentration of the coenzymes NAD, NADH, NADP, and NADPH in polymorphonuclear leukocytes during phagocytosis of Staphylococcus albus and due to the action of phospholipase C. Aellig A; Maillard M; Phavorin A; Frei J Enzyme; 1977; 22(3):207-12. PubMed ID: 16747 [TBL] [Abstract][Full Text] [Related]
18. Pyridine nucleotide-dependent generation of hydrogen peroxide by a particulate fraction from human neutrophils. DeChatelet LR; Shirley PS J Immunol; 1981 Mar; 126(3):1165-9. PubMed ID: 6893995 [TBL] [Abstract][Full Text] [Related]
19. Reversible activation of the neutrophil superoxide generating system by hexachlorocyclohexane: correlation with effects on a subcellular superoxide-generating fraction. English D; Schell M; Siakotos A; Gabig TG J Immunol; 1986 Jul; 137(1):283-90. PubMed ID: 2423606 [TBL] [Abstract][Full Text] [Related]
20. Studies on the mechanism of metabolic stimulation in polymorphonuclear leucocytes during phagocytosis. I. Evidence for superoxide anion involvement in the oxidation of NADPH2. Patriarca P; Dri P; Kakinuma K; Tedesco F; Rossi F Biochim Biophys Acta; 1975 Apr; 385(2):380-6. PubMed ID: 236010 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]