BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 9655105)

  • 1. The influence of active shear or compressive motion on fracture-healing.
    Park SH; O'Connor K; McKellop H; Sarmiento A
    J Bone Joint Surg Am; 1998 Jun; 80(6):868-78. PubMed ID: 9655105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shear movement at the fracture site delays healing in a diaphyseal fracture model.
    Augat P; Burger J; Schorlemmer S; Henke T; Peraus M; Claes L
    J Orthop Res; 2003 Nov; 21(6):1011-7. PubMed ID: 14554213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction between active motion and exogenous transforming growth factor Beta during tibial fracture repair.
    Park SH; O'Connor KM; McKellop H
    J Orthop Trauma; 2003 Jan; 17(1):2-10. PubMed ID: 12499962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of compression on the healing of experimental tibial fractures.
    Sigurdsen U; Reikeras O; Utvag SE
    Injury; 2011 Oct; 42(10):1152-6. PubMed ID: 20850739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shear does not necessarily inhibit bone healing.
    Bishop NE; van Rhijn M; Tami I; Corveleijn R; Schneider E; Ito K
    Clin Orthop Relat Res; 2006 Feb; 443():307-14. PubMed ID: 16462456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical stimulation by external application of cyclic tensile strains does not effectively enhance bone healing.
    Augat P; Merk J; Wolf S; Claes L
    J Orthop Trauma; 2001 Jan; 15(1):54-60. PubMed ID: 11147689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Load transmission through the callus site with external fixation systems: theoretical and experimental analysis.
    Prat J; Juan JA; Vera P; Hoyos JV; Dejoz R; Peris JL; Sánchez-Lacuesta J; Comín M
    J Biomech; 1994 Apr; 27(4):469-78. PubMed ID: 8188727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of healing process in open osteotomy model and closed fracture model.
    Park SH; O'Connor K; Sung R; McKellop H; Sarmiento A
    J Orthop Trauma; 1999 Feb; 13(2):114-20. PubMed ID: 10052786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of axial dynamization on bone healing.
    Egger EL; Gottsauner-Wolf F; Palmer J; Aro HT; Chao EY
    J Trauma; 1993 Feb; 34(2):185-92. PubMed ID: 8459454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of intermittent pneumatic soft-tissue compression on fracture-healing in an animal model.
    Park SH; Silva M
    J Bone Joint Surg Am; 2003 Aug; 85(8):1446-53. PubMed ID: 12925623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Timely fracture-healing requires optimization of axial fixation stability.
    Epari DR; Kassi JP; Schell H; Duda GN
    J Bone Joint Surg Am; 2007 Jul; 89(7):1575-85. PubMed ID: 17606797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fracture healing of the sheep tibia treated using a unilateral external fixator. Comparison of static and dynamic fixation.
    Hente R; Cordey J; Rahn BA; Maghsudi M; von Gumppenberg S; Perren SM
    Injury; 1999; 30 Suppl 1():A44-51. PubMed ID: 10645369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of fixator frame stiffness in the control of fracture healing. An experimental study.
    Goodship AE; Watkins PE; Rigby HS; Kenwright J
    J Biomech; 1993 Sep; 26(9):1027-35. PubMed ID: 8408085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone-healing patterns affected by loading, fracture fragment stability, fracture type, and fracture site compression.
    Aro HT; Chao EY
    Clin Orthop Relat Res; 1993 Aug; (293):8-17. PubMed ID: 8339513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of external fixators on fracture motion during simulated walking.
    Gardner TN; Evans M; Kenwright J
    Med Eng Phys; 1996 Jun; 18(4):305-13. PubMed ID: 8782189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metaphyseal locking plate as an external fixator for open tibial fracture: Clinical outcomes and biomechanical assessment.
    Ma CH; Wu CH; Jiang JR; Tu YK; Lin TS
    Injury; 2017 Feb; 48(2):501-505. PubMed ID: 27919511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 3D computational simulation of fracture callus formation: influence of the stiffness of the external fixator.
    Gómez-Benito MJ; García-Aznar JM; Kuiper JH; Doblaré M
    J Biomech Eng; 2006 Jun; 128(3):290-9. PubMed ID: 16706578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CYR61 (CCN1) protein expression during fracture healing in an ovine tibial model and its relation to the mechanical fixation stability.
    Lienau J; Schell H; Epari DR; Schütze N; Jakob F; Duda GN; Bail HJ
    J Orthop Res; 2006 Feb; 24(2):254-62. PubMed ID: 16435358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of fixation stiffness from flexible to stiff in a rat model of bone healing.
    Bartnikowski N; Claes LE; Koval L; Glatt V; Bindl R; Steck R; Ignatius A; Schuetz MA; Epari DR
    Acta Orthop; 2017 Apr; 88(2):217-222. PubMed ID: 27841708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Augmentation of bone healing by specific frequency and amplitude compressive strains.
    Shadmehr A; Esteki A; Oliaie GR; Torkaman G; Sabbaghian A
    Orthopedics; 2009 Mar; 32(3):173. PubMed ID: 19309060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.