These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 9655128)

  • 21. Force and stiffness of old dystrophic (mdx) mouse skeletal muscles.
    Bobet J; Mooney RF; Gordon T
    Muscle Nerve; 1998 Apr; 21(4):536-9. PubMed ID: 9533791
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contractile properties of diaphragm muscle segments from old mdx and old transgenic mdx mice.
    Lynch GS; Rafael JA; Hinkle RT; Cole NM; Chamberlain JS; Faulkner JA
    Am J Physiol; 1997 Jun; 272(6 Pt 1):C2063-8. PubMed ID: 9227435
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contractile properties of myocardium are altered in dystrophin-deficient mdx mice.
    Sapp JL; Bobet J; Howlett SE
    J Neurol Sci; 1996 Oct; 142(1-2):17-24. PubMed ID: 8902714
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low dose formoterol administration improves muscle function in dystrophic mdx mice without increasing fatigue.
    Harcourt LJ; Schertzer JD; Ryall JG; Lynch GS
    Neuromuscul Disord; 2007 Jan; 17(1):47-55. PubMed ID: 17134898
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A K(ATP) channel deficiency affects resting tension, not contractile force, during fatigue in skeletal muscle.
    Gong B; Miki T; Seino S; Renaud JM
    Am J Physiol Cell Physiol; 2000 Nov; 279(5):C1351-8. PubMed ID: 11029282
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [No influence of increased frequency on fatigability of tetanic contraction in rat atrophic soleus].
    Gao F; Yu ZB
    Sheng Li Xue Bao; 2005 Oct; 57(5):653-8. PubMed ID: 16220206
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recovery of damaged skeletal muscle in mdx mice through low-intensity endurance exercise.
    Frinchi M; Macaluso F; Licciardi A; Perciavalle V; Coco M; Belluardo N; Morici G; Mudò G
    Int J Sports Med; 2014 Jan; 35(1):19-27. PubMed ID: 23868681
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sarcoplasmic reticulum function in slow- and fast-twitch skeletal muscles from mdx mice.
    Divet A; Huchet-Cadiou C
    Pflugers Arch; 2002 Aug; 444(5):634-43. PubMed ID: 12194017
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contractile properties of slow and fast skeletal muscles from protease activated receptor-1 null mice.
    Sitparan PK; Pagel CN; Pinniger GJ; Yoo HJ; Mackie EJ; Bakker AJ
    Muscle Nerve; 2014 Dec; 50(6):991-8. PubMed ID: 24692104
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of zinc-carnosine complex on muscular function in frail distrophin-deficient (mdx) mice.
    Tameyasu T; Ohta M; Tanaka M; Ogihara K; Takahashi S; Yamanobe T
    Jpn J Physiol; 2002 Oct; 52(5):449-56. PubMed ID: 12533250
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Force and power output of fast and slow skeletal muscles from mdx mice 6-28 months old.
    Lynch GS; Hinkle RT; Chamberlain JS; Brooks SV; Faulkner JA
    J Physiol; 2001 Sep; 535(Pt 2):591-600. PubMed ID: 11533147
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Age-related changes in isolated mouse skeletal muscle function are dependent on sex, muscle, and contractility mode.
    Hill C; James RS; Cox VM; Seebacher F; Tallis J
    Am J Physiol Regul Integr Comp Physiol; 2020 Sep; 319(3):R296-R314. PubMed ID: 32697655
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fetal muscle-derived cells can repair dystrophic muscles in mdx mice.
    Auda-Boucher G; Rouaud T; Lafoux A; Levitsky D; Huchet-Cadiou C; Feron M; Guevel L; Talon S; Fontaine-Pérus J; Gardahaut MF
    Exp Cell Res; 2007 Mar; 313(5):997-1007. PubMed ID: 17275812
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Susceptibility to sarcomere injury induced by single stretches of maximally activated muscles of mdx mice.
    Consolino CM; Brooks SV
    J Appl Physiol (1985); 2004 Feb; 96(2):633-8. PubMed ID: 14715682
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Immobilization effects on contractile properties of aging rat skeletal muscle.
    Fisher JS; Brown M
    Aging (Milano); 1998 Feb; 10(1):59-66. PubMed ID: 9589753
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of contractile activity on muscle damage in the dystrophin-deficient mdx mouse.
    McArdle A; Edwards RH; Jackson MJ
    Clin Sci (Lond); 1991 Apr; 80(4):367-71. PubMed ID: 1851074
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Voltage-gated sodium channel (SkM1) content in dystrophin-deficient muscle.
    Ribaux P; Bleicher F; Couble ML; Amsellem J; Cohen SA; Berthier C; Blaineau S
    Pflugers Arch; 2001 Mar; 441(6):746-55. PubMed ID: 11316257
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contractile efficiency of dystrophic mdx mouse muscle: in vivo and ex vivo assessment of adaptation to exercise of functional end points.
    Capogrosso RF; Mantuano P; Cozzoli A; Sanarica F; Massari AM; Conte E; Fonzino A; Giustino A; Rolland JF; Quaranta A; De Bellis M; Camerino GM; Grange RW; De Luca A
    J Appl Physiol (1985); 2017 Apr; 122(4):828-843. PubMed ID: 28057817
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional properties of skeletal muscle from transgenic animals with upregulated heat shock protein 70.
    Nosek TM; Brotto MA; Essig DA; Mestril R; Conover RC; Dillmann WH; Kolbeck RC
    Physiol Genomics; 2000 Nov; 4(1):25-33. PubMed ID: 11074010
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of insulin-like growth factor (IGF)-I and IGF-binding protein interactions enhances skeletal muscle regeneration and ameliorates the dystrophic pathology in mdx mice.
    Schertzer JD; Gehrig SM; Ryall JG; Lynch GS
    Am J Pathol; 2007 Oct; 171(4):1180-8. PubMed ID: 17823291
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.