BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 9655209)

  • 1. An in vitro model for acoustic overstimulation.
    Fridberger A; van Maarseveen JT; Ulfendahl M
    Acta Otolaryngol; 1998 Jun; 118(3):352-61. PubMed ID: 9655209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes of hair cell stereocilia and threshold shift after acoustic trauma in guinea pigs: comparison between inner and outer hair cells.
    Chen YS; Liu TC; Cheng CH; Yeh TH; Lee SY; Hsu CJ
    ORL J Otorhinolaryngol Relat Spec; 2003; 65(5):266-74. PubMed ID: 14730182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in the mechanical tuning characteristics of the hearing organ following acoustic overstimulation.
    Ulfendahl M; Khanna SM; Löfstrand P
    Eur J Neurosci; 1993 Jun; 5(6):713-23. PubMed ID: 8261142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute mechanical overstimulation of isolated outer hair cells causes changes in intracellular calcium levels without shape changes.
    Fridberger A; Ulfendahl M
    Acta Otolaryngol; 1996 Jan; 116(1):17-24. PubMed ID: 8820345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of acoustic trauma on the tectorial membrane, stereocilia, and hearing sensitivity: possible mechanisms underlying damage, recovery, and protection.
    Canlon B
    Scand Audiol Suppl; 1988; 27():1-45. PubMed ID: 3043645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in Guinea pig cochlear hair cells after sound conditioning and noise exposure.
    Zuo H; Cui B; She X; Wu M
    J Occup Health; 2008; 50(5):373-9. PubMed ID: 18654041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic trauma causes reversible stiffness changes in auditory sensory cells.
    Chan E; Suneson A; Ulfendahl M
    Neuroscience; 1998 Apr; 83(3):961-8. PubMed ID: 9483577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two modes of auditory hair cell loss following acoustic overstimulation in the avian inner ear.
    Nakagawa T; Yamane H; Shibata S; Takayama M; Sunami K; Nakai Y
    ORL J Otorhinolaryngol Relat Spec; 1997; 59(6):303-10. PubMed ID: 9364545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-related changes in the guinea pig cochlea after acoustic overstimulation.
    Fredelius L; Johansson B; Bagger-Sjöbäck D; Wersäll J
    Ann Otol Rhinol Laryngol; 1990 May; 99(5 Pt 1):369-78. PubMed ID: 2337316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological correlates of hearing loss after cochlear implantation and electro-acoustic stimulation in a hearing-impaired Guinea pig model.
    Reiss LA; Stark G; Nguyen-Huynh AT; Spear KA; Zhang H; Tanaka C; Li H
    Hear Res; 2015 Sep; 327():163-74. PubMed ID: 26087114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trauma-specific insults to the cochlear nucleus in the rat.
    Sekiya T; Viberg A; Kojima K; Sakamoto T; Nakagawa T; Ito J; Canlon B
    J Neurosci Res; 2012 Oct; 90(10):1924-31. PubMed ID: 22715005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging the living inner ear using intravital confocal microscopy.
    Tomo I; Le Calvez S; Maier H; Boutet de Monvel J; Fridberger A; Ulfendahl M
    Neuroimage; 2007 May; 35(4):1393-400. PubMed ID: 17382563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loud sound-induced changes in cochlear mechanics.
    Fridberger A; Zheng J; Parthasarathi A; Ren T; Nuttall A
    J Neurophysiol; 2002 Nov; 88(5):2341-8. PubMed ID: 12424275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association of Caffeine and Hearing Recovery After Acoustic Overstimulation Events in a Guinea Pig Model.
    Zawawi F; Bezdjian A; Mujica-Mota M; Rappaport J; Daniel SJ
    JAMA Otolaryngol Head Neck Surg; 2016 Apr; 142(4):383-8. PubMed ID: 26940042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hearing shift and inner ear pathology of guinea pigs exposed to octave bands of noise centered at 63 Hz and 4 kHz.
    Wang L; Jiang W; Qian J
    Chin Med J (Engl); 1994 Jul; 107(7):500-4. PubMed ID: 7956496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensorineural hearing loss after vibration: an animal model for evaluating prevention and treatment of inner ear hearing loss.
    Zou J; Bretlau P; Pyykkö I; Starck J; Toppila E
    Acta Otolaryngol; 2001 Jan; 121(2):143-8. PubMed ID: 11349766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sound-evoked radial strain in the hearing organ.
    Tomo I; Boutet de Monvel J; Fridberger A
    Biophys J; 2007 Nov; 93(9):3279-84. PubMed ID: 17604314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Outer hair cells in the mammalian cochlea and noise-induced hearing loss.
    Cody AR; Russell IJ
    Nature; 1985 Jun 20-26; 315(6021):662-5. PubMed ID: 4010777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrastructural evidence for protection of the outer hair cells of the inner ear during intense noise exposure by application of the organic calcium channel blocker diltiazem.
    Heinrich UR; Maurer J; Mann W
    ORL J Otorhinolaryngol Relat Spec; 1999; 61(6):321-7. PubMed ID: 10545805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic overstimulation activates 5'-AMP-activated protein kinase through a temporary decrease in ATP level in the cochlear spiral ligament prior to permanent hearing loss in mice.
    Nagashima R; Yamaguchi T; Kuramoto N; Ogita K
    Neurochem Int; 2011 Nov; 59(6):812-20. PubMed ID: 21906645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.