These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 9655340)
1. Conformational change in the activation of lipase: an analysis in terms of low-frequency normal modes. Jääskeläinen S; Verma CS; Hubbard RE; Linko P; Caves LS Protein Sci; 1998 Jun; 7(6):1359-67. PubMed ID: 9655340 [TBL] [Abstract][Full Text] [Related]
2. Theoretical investigation of the dynamics of the active site lid in Rhizomucor miehei lipase. Peters GH; Olsen OH; Svendsen A; Wade RC Biophys J; 1996 Jul; 71(1):119-29. PubMed ID: 8804595 [TBL] [Abstract][Full Text] [Related]
3. Theoretical studies of Rhizomucor miehei lipase activation. Norin M; Olsen O; Svendsen A; Edholm O; Hult K Protein Eng; 1993 Nov; 6(8):855-63. PubMed ID: 8309933 [TBL] [Abstract][Full Text] [Related]
4. Role of an electrostatic network of residues in the enzymatic action of the Rhizomucor miehei lipase family. Herrgård S; Gibas CJ; Subramaniam S Biochemistry; 2000 Mar; 39(11):2921-30. PubMed ID: 10715112 [TBL] [Abstract][Full Text] [Related]
5. The role of arginines in stabilizing the active open-lid conformation of Rhizomucor miehei lipase. Holmquist M; Norin M; Hult K Lipids; 1993 Aug; 28(8):721-6. PubMed ID: 8377587 [TBL] [Abstract][Full Text] [Related]
6. Activation of an enzyme simulated by explicit dynamics of an active site lid. Northrup SH Biophys J; 1996 Jul; 71(1):3. PubMed ID: 8804581 [No Abstract] [Full Text] [Related]
7. Domain motions and the open-to-closed conformational transition of an enzyme: a normal mode analysis of S-adenosyl-L-homocysteine hydrolase. Wang M; Borchardt RT; Schowen RL; Kuczera K Biochemistry; 2005 May; 44(19):7228-39. PubMed ID: 15882061 [TBL] [Abstract][Full Text] [Related]
8. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Brzozowski AM; Derewenda U; Derewenda ZS; Dodson GG; Lawson DM; Turkenburg JP; Bjorkling F; Huge-Jensen B; Patkar SA; Thim L Nature; 1991 Jun; 351(6326):491-4. PubMed ID: 2046751 [TBL] [Abstract][Full Text] [Related]
10. Computational studies of the activation of lipases and the effect of a hydrophobic environment. Peters GH; Toxvaerd S; Olsen OH; Svendsen A Protein Eng; 1997 Feb; 10(2):137-47. PubMed ID: 9089813 [TBL] [Abstract][Full Text] [Related]
11. The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1.9 A resolution. Derewenda ZS; Derewenda U; Dodson GG J Mol Biol; 1992 Oct; 227(3):818-39. PubMed ID: 1404390 [TBL] [Abstract][Full Text] [Related]
12. Computational analysis of chain flexibility and fluctuations in Rhizomucor miehei lipase. Peters GH; Bywater RP Protein Eng; 1999 Sep; 12(9):747-54. PubMed ID: 10506284 [TBL] [Abstract][Full Text] [Related]
13. Essential dynamics of lipase binding sites: the effect of inhibitors of different chain length. Peters GH; van Aalten DM; Svendsen A; Bywater R Protein Eng; 1997 Feb; 10(2):149-58. PubMed ID: 9089814 [TBL] [Abstract][Full Text] [Related]
14. The Enzymatic Activity of Lipases Correlates with Polarity-Induced Conformational Changes: A Trp-Induced Quenching Fluorescence Study. Skjold-Jørgensen J; Bhatia VK; Vind J; Svendsen A; Bjerrum MJ; Farrens D Biochemistry; 2015 Jul; 54(27):4186-96. PubMed ID: 26087334 [TBL] [Abstract][Full Text] [Related]
15. Catalysis at the interface: the anatomy of a conformational change in a triglyceride lipase. Derewenda U; Brzozowski AM; Lawson DM; Derewenda ZS Biochemistry; 1992 Feb; 31(5):1532-41. PubMed ID: 1737010 [TBL] [Abstract][Full Text] [Related]
16. Insights into lid movements of Burkholderia cepacia lipase inferred from molecular dynamics simulations. Barbe S; Lafaquière V; Guieysse D; Monsan P; Remaud-Siméon M; André I Proteins; 2009 Nov; 77(3):509-23. PubMed ID: 19475702 [TBL] [Abstract][Full Text] [Related]
17. Lipases That Activate at High Solvent Polarities. Skjold-Jørgensen J; Vind J; Svendsen A; Bjerrum MJ Biochemistry; 2016 Jan; 55(1):146-56. PubMed ID: 26645098 [TBL] [Abstract][Full Text] [Related]
18. Template-based modeling of a psychrophilic lipase: conformational changes, novel structural features and its application in predicting the enantioselectivity of lipase catalyzed transesterification of secondary alcohols. Xu T; Gao B; Zhang L; Lin J; Wang X; Wei D Biochim Biophys Acta; 2010 Dec; 1804(12):2183-90. PubMed ID: 20828637 [TBL] [Abstract][Full Text] [Related]
19. Folding funnels and conformational transitions via hinge-bending motions. Kumar S; Ma B; Tsai CJ; Wolfson H; Nussinov R Cell Biochem Biophys; 1999; 31(2):141-64. PubMed ID: 10593256 [TBL] [Abstract][Full Text] [Related]
20. Computer modeling of substrate binding to lipases from Rhizomucor miehei, Humicola lanuginosa, and Candida rugosa. Norin M; Haeffner F; Achour A; Norin T; Hult K Protein Sci; 1994 Sep; 3(9):1493-503. PubMed ID: 7833809 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]